A، D نى يېشىش
A=-\frac{7}{24}\approx -0.291666667
D=-\frac{13}{24}\approx -0.541666667
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3A-9D=4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
8A-8D=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3A-9D=4,8A-8D=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3A-9D=4
تەڭلىمىدىن بىرنى تالاپ، A نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق A نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3A=9D+4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 9D نى قوشۇڭ.
A=\frac{1}{3}\left(9D+4\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
A=3D+\frac{4}{3}
\frac{1}{3} نى 9D+4 كە كۆپەيتىڭ.
8\left(3D+\frac{4}{3}\right)-8D=2
يەنە بىر تەڭلىمە 8A-8D=2 دىكى A نىڭ ئورنىغا 3D+\frac{4}{3} نى ئالماشتۇرۇڭ.
24D+\frac{32}{3}-8D=2
8 نى 3D+\frac{4}{3} كە كۆپەيتىڭ.
16D+\frac{32}{3}=2
24D نى -8D گە قوشۇڭ.
16D=-\frac{26}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{32}{3} نى ئېلىڭ.
D=-\frac{13}{24}
ھەر ئىككى تەرەپنى 16 گە بۆلۈڭ.
A=3\left(-\frac{13}{24}\right)+\frac{4}{3}
A=3D+\frac{4}{3} دە -\frac{13}{24} نى D گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، A نى بىۋاسىتە يېشەلەيسىز.
A=-\frac{13}{8}+\frac{4}{3}
3 نى -\frac{13}{24} كە كۆپەيتىڭ.
A=-\frac{7}{24}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{4}{3} نى -\frac{13}{8} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
A=-\frac{7}{24},D=-\frac{13}{24}
سىستېما ھەل قىلىندى.
3A-9D=4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
8A-8D=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3A-9D=4,8A-8D=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}A\\D\end{matrix}\right)=inverse(\left(\begin{matrix}3&-9\\8&-8\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{3\left(-8\right)-\left(-9\times 8\right)}&-\frac{-9}{3\left(-8\right)-\left(-9\times 8\right)}\\-\frac{8}{3\left(-8\right)-\left(-9\times 8\right)}&\frac{3}{3\left(-8\right)-\left(-9\times 8\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{3}{16}\\-\frac{1}{6}&\frac{1}{16}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\times 4+\frac{3}{16}\times 2\\-\frac{1}{6}\times 4+\frac{1}{16}\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}A\\D\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{24}\\-\frac{13}{24}\end{matrix}\right)
ھېسابلاڭ.
A=-\frac{7}{24},D=-\frac{13}{24}
ماترىتسا ئېلېمېنتلىرى A ۋە D نى يېيىڭ.
3A-9D=4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
8A-8D=2
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3A-9D=4,8A-8D=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
8\times 3A+8\left(-9\right)D=8\times 4,3\times 8A+3\left(-8\right)D=3\times 2
3A بىلەن 8A نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 8 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
24A-72D=32,24A-24D=6
ئاددىيلاشتۇرۇڭ.
24A-24A-72D+24D=32-6
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 24A-72D=32 دىن 24A-24D=6 نى ئېلىڭ.
-72D+24D=32-6
24A نى -24A گە قوشۇڭ. 24A بىلەن -24A يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-48D=32-6
-72D نى 24D گە قوشۇڭ.
-48D=26
32 نى -6 گە قوشۇڭ.
D=-\frac{13}{24}
ھەر ئىككى تەرەپنى -48 گە بۆلۈڭ.
8A-8\left(-\frac{13}{24}\right)=2
8A-8D=2 دە -\frac{13}{24} نى D گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، A نى بىۋاسىتە يېشەلەيسىز.
8A+\frac{13}{3}=2
-8 نى -\frac{13}{24} كە كۆپەيتىڭ.
8A=-\frac{7}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{13}{3} نى ئېلىڭ.
A=-\frac{7}{24}
ھەر ئىككى تەرەپنى 8 گە بۆلۈڭ.
A=-\frac{7}{24},D=-\frac{13}{24}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}