ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3y-6x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 6x نى ئېلىڭ.
2x+y=7
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
3y-6x=-3,y+2x=7
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3y-6x=-3
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3y=6x-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6x نى قوشۇڭ.
y=\frac{1}{3}\left(6x-3\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
y=2x-1
\frac{1}{3} نى 6x-3 كە كۆپەيتىڭ.
2x-1+2x=7
يەنە بىر تەڭلىمە y+2x=7 دىكى y نىڭ ئورنىغا 2x-1 نى ئالماشتۇرۇڭ.
4x-1=7
2x نى 2x گە قوشۇڭ.
4x=8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
y=2\times 2-1
y=2x-1 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=4-1
2 نى 2 كە كۆپەيتىڭ.
y=3
-1 نى 4 گە قوشۇڭ.
y=3,x=2
سىستېما ھەل قىلىندى.
3y-6x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 6x نى ئېلىڭ.
2x+y=7
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
3y-6x=-3,y+2x=7
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\7\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}3&-6\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
\left(\begin{matrix}3&-6\\1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}3&-6\\1&2\end{matrix}\right))\left(\begin{matrix}-3\\7\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-6\right)}&-\frac{-6}{3\times 2-\left(-6\right)}\\-\frac{1}{3\times 2-\left(-6\right)}&\frac{3}{3\times 2-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{2}\\-\frac{1}{12}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-3\\7\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\left(-3\right)+\frac{1}{2}\times 7\\-\frac{1}{12}\left(-3\right)+\frac{1}{4}\times 7\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ھېسابلاڭ.
y=3,x=2
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
3y-6x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 6x نى ئېلىڭ.
2x+y=7
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
3y-6x=-3,y+2x=7
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3y-6x=-3,3y+3\times 2x=3\times 7
3y بىلەن y نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
3y-6x=-3,3y+6x=21
ئاددىيلاشتۇرۇڭ.
3y-3y-6x-6x=-3-21
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3y-6x=-3 دىن 3y+6x=21 نى ئېلىڭ.
-6x-6x=-3-21
3y نى -3y گە قوشۇڭ. 3y بىلەن -3y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-12x=-3-21
-6x نى -6x گە قوشۇڭ.
-12x=-24
-3 نى -21 گە قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى -12 گە بۆلۈڭ.
y+2\times 2=7
y+2x=7 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y+4=7
2 نى 2 كە كۆپەيتىڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4 نى ئېلىڭ.
y=3,x=2
سىستېما ھەل قىلىندى.