ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x-y=10,4x+y=11
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-y=10
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=y+10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{3}\left(y+10\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{1}{3}y+\frac{10}{3}
\frac{1}{3} نى y+10 كە كۆپەيتىڭ.
4\left(\frac{1}{3}y+\frac{10}{3}\right)+y=11
يەنە بىر تەڭلىمە 4x+y=11 دىكى x نىڭ ئورنىغا \frac{10+y}{3} نى ئالماشتۇرۇڭ.
\frac{4}{3}y+\frac{40}{3}+y=11
4 نى \frac{10+y}{3} كە كۆپەيتىڭ.
\frac{7}{3}y+\frac{40}{3}=11
\frac{4y}{3} نى y گە قوشۇڭ.
\frac{7}{3}y=-\frac{7}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{40}{3} نى ئېلىڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{7}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{1}{3}\left(-1\right)+\frac{10}{3}
x=\frac{1}{3}y+\frac{10}{3} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-1+10}{3}
\frac{1}{3} نى -1 كە كۆپەيتىڭ.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{10}{3} نى -\frac{1}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=-1
سىستېما ھەل قىلىندى.
3x-y=10,4x+y=11
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-1\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\11\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-1\\4&1\end{matrix}\right))\left(\begin{matrix}3&-1\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\4&1\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
\left(\begin{matrix}3&-1\\4&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\4&1\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\4&1\end{matrix}\right))\left(\begin{matrix}10\\11\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-4\right)}&-\frac{-1}{3-\left(-4\right)}\\-\frac{4}{3-\left(-4\right)}&\frac{3}{3-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{4}{7}&\frac{3}{7}\end{matrix}\right)\left(\begin{matrix}10\\11\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 10+\frac{1}{7}\times 11\\-\frac{4}{7}\times 10+\frac{3}{7}\times 11\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
ھېسابلاڭ.
x=3,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-y=10,4x+y=11
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 3x+4\left(-1\right)y=4\times 10,3\times 4x+3y=3\times 11
3x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
12x-4y=40,12x+3y=33
ئاددىيلاشتۇرۇڭ.
12x-12x-4y-3y=40-33
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x-4y=40 دىن 12x+3y=33 نى ئېلىڭ.
-4y-3y=40-33
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-7y=40-33
-4y نى -3y گە قوشۇڭ.
-7y=7
40 نى -33 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
4x-1=11
4x+y=11 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x=12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
x=3
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=3,y=-1
سىستېما ھەل قىلىندى.