ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x-y+2=0,5x-2y+1=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-y+2=0
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x-y=-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
3x=y-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=\frac{1}{3}\left(y-2\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{1}{3}y-\frac{2}{3}
\frac{1}{3} نى y-2 كە كۆپەيتىڭ.
5\left(\frac{1}{3}y-\frac{2}{3}\right)-2y+1=0
يەنە بىر تەڭلىمە 5x-2y+1=0 دىكى x نىڭ ئورنىغا \frac{-2+y}{3} نى ئالماشتۇرۇڭ.
\frac{5}{3}y-\frac{10}{3}-2y+1=0
5 نى \frac{-2+y}{3} كە كۆپەيتىڭ.
-\frac{1}{3}y-\frac{10}{3}+1=0
\frac{5y}{3} نى -2y گە قوشۇڭ.
-\frac{1}{3}y-\frac{7}{3}=0
-\frac{10}{3} نى 1 گە قوشۇڭ.
-\frac{1}{3}y=\frac{7}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{7}{3} نى قوشۇڭ.
y=-7
ھەر ئىككى تەرەپنى -3 گە كۆپەيتىڭ.
x=\frac{1}{3}\left(-7\right)-\frac{2}{3}
x=\frac{1}{3}y-\frac{2}{3} دە -7 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-7-2}{3}
\frac{1}{3} نى -7 كە كۆپەيتىڭ.
x=-3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{2}{3} نى -\frac{7}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-3,y=-7
سىستېما ھەل قىلىندى.
3x-y+2=0,5x-2y+1=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\5&-2\end{matrix}\right))\left(\begin{matrix}-2\\-1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3\left(-2\right)-\left(-5\right)}&-\frac{-1}{3\left(-2\right)-\left(-5\right)}\\-\frac{5}{3\left(-2\right)-\left(-5\right)}&\frac{3}{3\left(-2\right)-\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2&-1\\5&-3\end{matrix}\right)\left(\begin{matrix}-2\\-1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\left(-2\right)-\left(-1\right)\\5\left(-2\right)-3\left(-1\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-7\end{matrix}\right)
ھېسابلاڭ.
x=-3,y=-7
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-y+2=0,5x-2y+1=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5\times 3x+5\left(-1\right)y+5\times 2=0,3\times 5x+3\left(-2\right)y+3=0
3x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
15x-5y+10=0,15x-6y+3=0
ئاددىيلاشتۇرۇڭ.
15x-15x-5y+6y+10-3=0
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 15x-5y+10=0 دىن 15x-6y+3=0 نى ئېلىڭ.
-5y+6y+10-3=0
15x نى -15x گە قوشۇڭ. 15x بىلەن -15x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
y+10-3=0
-5y نى 6y گە قوشۇڭ.
y+7=0
10 نى -3 گە قوشۇڭ.
y=-7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 7 نى ئېلىڭ.
5x-2\left(-7\right)+1=0
5x-2y+1=0 دە -7 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x+14+1=0
-2 نى -7 كە كۆپەيتىڭ.
5x+15=0
14 نى 1 گە قوشۇڭ.
5x=-15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
x=-3
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=-3,y=-7
سىستېما ھەل قىلىندى.