x، y نى يېشىش
x = \frac{19}{2} = 9\frac{1}{2} = 9.5
y = \frac{47}{4} = 11\frac{3}{4} = 11.75
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x-2y=5,-x+2y-5=9
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-2y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=2y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{3}\left(2y+5\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{2}{3}y+\frac{5}{3}
\frac{1}{3} نى 2y+5 كە كۆپەيتىڭ.
-\left(\frac{2}{3}y+\frac{5}{3}\right)+2y-5=9
يەنە بىر تەڭلىمە -x+2y-5=9 دىكى x نىڭ ئورنىغا \frac{2y+5}{3} نى ئالماشتۇرۇڭ.
-\frac{2}{3}y-\frac{5}{3}+2y-5=9
-1 نى \frac{2y+5}{3} كە كۆپەيتىڭ.
\frac{4}{3}y-\frac{5}{3}-5=9
-\frac{2y}{3} نى 2y گە قوشۇڭ.
\frac{4}{3}y-\frac{20}{3}=9
-\frac{5}{3} نى -5 گە قوشۇڭ.
\frac{4}{3}y=\frac{47}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{20}{3} نى قوشۇڭ.
y=\frac{47}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{4}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{2}{3}\times \frac{47}{4}+\frac{5}{3}
x=\frac{2}{3}y+\frac{5}{3} دە \frac{47}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{47}{6}+\frac{5}{3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{2}{3} نى \frac{47}{4} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{19}{2}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{3} نى \frac{47}{6} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{19}{2},y=\frac{47}{4}
سىستېما ھەل قىلىندى.
3x-2y=5,-x+2y-5=9
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\14\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}5\\14\end{matrix}\right)
\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}5\\14\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\-1&2\end{matrix}\right))\left(\begin{matrix}5\\14\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-\left(-2\left(-1\right)\right)}&-\frac{-2}{3\times 2-\left(-2\left(-1\right)\right)}\\-\frac{-1}{3\times 2-\left(-2\left(-1\right)\right)}&\frac{3}{3\times 2-\left(-2\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\14\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\14\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 5+\frac{1}{2}\times 14\\\frac{1}{4}\times 5+\frac{3}{4}\times 14\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{19}{2}\\\frac{47}{4}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{19}{2},y=\frac{47}{4}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-2y=5,-x+2y-5=9
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3x-\left(-2y\right)=-5,3\left(-1\right)x+3\times 2y+3\left(-5\right)=3\times 9
3x بىلەن -x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
-3x+2y=-5,-3x+6y-15=27
ئاددىيلاشتۇرۇڭ.
-3x+3x+2y-6y+15=-5-27
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -3x+2y=-5 دىن -3x+6y-15=27 نى ئېلىڭ.
2y-6y+15=-5-27
-3x نى 3x گە قوشۇڭ. -3x بىلەن 3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4y+15=-5-27
2y نى -6y گە قوشۇڭ.
-4y+15=-32
-5 نى -27 گە قوشۇڭ.
-4y=-47
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 15 نى ئېلىڭ.
y=\frac{47}{4}
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
-x+2\times \frac{47}{4}-5=9
-x+2y-5=9 دە \frac{47}{4} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-x+\frac{47}{2}-5=9
2 نى \frac{47}{4} كە كۆپەيتىڭ.
-x+\frac{37}{2}=9
\frac{47}{2} نى -5 گە قوشۇڭ.
-x=-\frac{19}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{37}{2} نى ئېلىڭ.
x=\frac{19}{2}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=\frac{19}{2},y=\frac{47}{4}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}