ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x-2y=20,5x+8y=22
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x-2y=20
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=2y+20
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{3}\left(2y+20\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{2}{3}y+\frac{20}{3}
\frac{1}{3} نى 20+2y كە كۆپەيتىڭ.
5\left(\frac{2}{3}y+\frac{20}{3}\right)+8y=22
يەنە بىر تەڭلىمە 5x+8y=22 دىكى x نىڭ ئورنىغا \frac{20+2y}{3} نى ئالماشتۇرۇڭ.
\frac{10}{3}y+\frac{100}{3}+8y=22
5 نى \frac{20+2y}{3} كە كۆپەيتىڭ.
\frac{34}{3}y+\frac{100}{3}=22
\frac{10y}{3} نى 8y گە قوشۇڭ.
\frac{34}{3}y=-\frac{34}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{100}{3} نى ئېلىڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{34}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{2}{3}\left(-1\right)+\frac{20}{3}
x=\frac{2}{3}y+\frac{20}{3} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-2+20}{3}
\frac{2}{3} نى -1 كە كۆپەيتىڭ.
x=6
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{20}{3} نى -\frac{2}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=6,y=-1
سىستېما ھەل قىلىندى.
3x-2y=20,5x+8y=22
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&-2\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\22\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}3&-2\\5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}20\\22\end{matrix}\right)
\left(\begin{matrix}3&-2\\5&8\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}20\\22\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-2\\5&8\end{matrix}\right))\left(\begin{matrix}20\\22\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{3\times 8-\left(-2\times 5\right)}&-\frac{-2}{3\times 8-\left(-2\times 5\right)}\\-\frac{5}{3\times 8-\left(-2\times 5\right)}&\frac{3}{3\times 8-\left(-2\times 5\right)}\end{matrix}\right)\left(\begin{matrix}20\\22\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&\frac{1}{17}\\-\frac{5}{34}&\frac{3}{34}\end{matrix}\right)\left(\begin{matrix}20\\22\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 20+\frac{1}{17}\times 22\\-\frac{5}{34}\times 20+\frac{3}{34}\times 22\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-1\end{matrix}\right)
ھېسابلاڭ.
x=6,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x-2y=20,5x+8y=22
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5\times 3x+5\left(-2\right)y=5\times 20,3\times 5x+3\times 8y=3\times 22
3x بىلەن 5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
15x-10y=100,15x+24y=66
ئاددىيلاشتۇرۇڭ.
15x-15x-10y-24y=100-66
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 15x-10y=100 دىن 15x+24y=66 نى ئېلىڭ.
-10y-24y=100-66
15x نى -15x گە قوشۇڭ. 15x بىلەن -15x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-34y=100-66
-10y نى -24y گە قوشۇڭ.
-34y=34
100 نى -66 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -34 گە بۆلۈڭ.
5x+8\left(-1\right)=22
5x+8y=22 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x-8=22
8 نى -1 كە كۆپەيتىڭ.
5x=30
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8 نى قوشۇڭ.
x=6
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=6,y=-1
سىستېما ھەل قىلىندى.