x، y نى يېشىش
x = \frac{12}{5} = 2\frac{2}{5} = 2.4
y = -\frac{31}{5} = -6\frac{1}{5} = -6.2
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
3x+y=1,2x-y=11
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{3}\left(-y+1\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{1}{3}y+\frac{1}{3}
\frac{1}{3} نى -y+1 كە كۆپەيتىڭ.
2\left(-\frac{1}{3}y+\frac{1}{3}\right)-y=11
يەنە بىر تەڭلىمە 2x-y=11 دىكى x نىڭ ئورنىغا \frac{-y+1}{3} نى ئالماشتۇرۇڭ.
-\frac{2}{3}y+\frac{2}{3}-y=11
2 نى \frac{-y+1}{3} كە كۆپەيتىڭ.
-\frac{5}{3}y+\frac{2}{3}=11
-\frac{2y}{3} نى -y گە قوشۇڭ.
-\frac{5}{3}y=\frac{31}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{2}{3} نى ئېلىڭ.
y=-\frac{31}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{5}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{3}\left(-\frac{31}{5}\right)+\frac{1}{3}
x=-\frac{1}{3}y+\frac{1}{3} دە -\frac{31}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{31}{15}+\frac{1}{3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{1}{3} نى -\frac{31}{5} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{12}{5}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى \frac{31}{15} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{12}{5},y=-\frac{31}{5}
سىستېما ھەل قىلىندى.
3x+y=1,2x-y=11
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{1}{3\left(-1\right)-2}\\-\frac{2}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{1}{5}\times 11\\\frac{2}{5}-\frac{3}{5}\times 11\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\\-\frac{31}{5}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{12}{5},y=-\frac{31}{5}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+y=1,2x-y=11
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\times 3x+2y=2,3\times 2x+3\left(-1\right)y=3\times 11
3x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
6x+2y=2,6x-3y=33
ئاددىيلاشتۇرۇڭ.
6x-6x+2y+3y=2-33
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6x+2y=2 دىن 6x-3y=33 نى ئېلىڭ.
2y+3y=2-33
6x نى -6x گە قوشۇڭ. 6x بىلەن -6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
5y=2-33
2y نى 3y گە قوشۇڭ.
5y=-31
2 نى -33 گە قوشۇڭ.
y=-\frac{31}{5}
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
2x-\left(-\frac{31}{5}\right)=11
2x-y=11 دە -\frac{31}{5} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=\frac{24}{5}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{31}{5} نى ئېلىڭ.
x=\frac{12}{5}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{12}{5},y=-\frac{31}{5}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}