ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+4y=17,x+y=5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+4y=17
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-4y+17
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4y نى ئېلىڭ.
x=\frac{1}{3}\left(-4y+17\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{4}{3}y+\frac{17}{3}
\frac{1}{3} نى -4y+17 كە كۆپەيتىڭ.
-\frac{4}{3}y+\frac{17}{3}+y=5
يەنە بىر تەڭلىمە x+y=5 دىكى x نىڭ ئورنىغا \frac{-4y+17}{3} نى ئالماشتۇرۇڭ.
-\frac{1}{3}y+\frac{17}{3}=5
-\frac{4y}{3} نى y گە قوشۇڭ.
-\frac{1}{3}y=-\frac{2}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{17}{3} نى ئېلىڭ.
y=2
ھەر ئىككى تەرەپنى -3 گە كۆپەيتىڭ.
x=-\frac{4}{3}\times 2+\frac{17}{3}
x=-\frac{4}{3}y+\frac{17}{3} دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-8+17}{3}
-\frac{4}{3} نى 2 كە كۆپەيتىڭ.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{17}{3} نى -\frac{8}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=2
سىستېما ھەل قىلىندى.
3x+4y=17,x+y=5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}3&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
\left(\begin{matrix}3&4\\1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\1&1\end{matrix}\right))\left(\begin{matrix}17\\5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4}&-\frac{4}{3-4}\\-\frac{1}{3-4}&\frac{3}{3-4}\end{matrix}\right)\left(\begin{matrix}17\\5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&4\\1&-3\end{matrix}\right)\left(\begin{matrix}17\\5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-17+4\times 5\\17-3\times 5\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ھېسابلاڭ.
x=3,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+4y=17,x+y=5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3x+4y=17,3x+3y=3\times 5
3x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
3x+4y=17,3x+3y=15
ئاددىيلاشتۇرۇڭ.
3x-3x+4y-3y=17-15
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 3x+4y=17 دىن 3x+3y=15 نى ئېلىڭ.
4y-3y=17-15
3x نى -3x گە قوشۇڭ. 3x بىلەن -3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
y=17-15
4y نى -3y گە قوشۇڭ.
y=2
17 نى -15 گە قوشۇڭ.
x+2=5
x+y=5 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2 نى ئېلىڭ.
x=3,y=2
سىستېما ھەل قىلىندى.