ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

3x+4y=1,4x+y=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
3x+4y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
3x=-4y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4y نى ئېلىڭ.
x=\frac{1}{3}\left(-4y+1\right)
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{4}{3}y+\frac{1}{3}
\frac{1}{3} نى -4y+1 كە كۆپەيتىڭ.
4\left(-\frac{4}{3}y+\frac{1}{3}\right)+y=2
يەنە بىر تەڭلىمە 4x+y=2 دىكى x نىڭ ئورنىغا \frac{-4y+1}{3} نى ئالماشتۇرۇڭ.
-\frac{16}{3}y+\frac{4}{3}+y=2
4 نى \frac{-4y+1}{3} كە كۆپەيتىڭ.
-\frac{13}{3}y+\frac{4}{3}=2
-\frac{16y}{3} نى y گە قوشۇڭ.
-\frac{13}{3}y=\frac{2}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{4}{3} نى ئېلىڭ.
y=-\frac{2}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{13}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{4}{3}\left(-\frac{2}{13}\right)+\frac{1}{3}
x=-\frac{4}{3}y+\frac{1}{3} دە -\frac{2}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{8}{39}+\frac{1}{3}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{4}{3} نى -\frac{2}{13} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{7}{13}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{3} نى \frac{8}{39} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{7}{13},y=-\frac{2}{13}
سىستېما ھەل قىلىندى.
3x+4y=1,4x+y=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}3&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}3&4\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
\left(\begin{matrix}3&4\\4&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&4\\4&1\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-4\times 4}&-\frac{4}{3-4\times 4}\\-\frac{4}{3-4\times 4}&\frac{3}{3-4\times 4}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}&\frac{4}{13}\\\frac{4}{13}&-\frac{3}{13}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{13}+\frac{4}{13}\times 2\\\frac{4}{13}-\frac{3}{13}\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{13}\\-\frac{2}{13}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{7}{13},y=-\frac{2}{13}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
3x+4y=1,4x+y=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 3x+4\times 4y=4,3\times 4x+3y=3\times 2
3x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 3 گە كۆپەيتىڭ.
12x+16y=4,12x+3y=6
ئاددىيلاشتۇرۇڭ.
12x-12x+16y-3y=4-6
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+16y=4 دىن 12x+3y=6 نى ئېلىڭ.
16y-3y=4-6
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
13y=4-6
16y نى -3y گە قوشۇڭ.
13y=-2
4 نى -6 گە قوشۇڭ.
y=-\frac{2}{13}
ھەر ئىككى تەرەپنى 13 گە بۆلۈڭ.
4x-\frac{2}{13}=2
4x+y=2 دە -\frac{2}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x=\frac{28}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{2}{13} نى قوشۇڭ.
x=\frac{7}{13}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{7}{13},y=-\frac{2}{13}
سىستېما ھەل قىلىندى.