ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2y-3x=-4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
2y-x=1
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2y-3x=-4,2y-x=1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2y-3x=-4
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2y=3x-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3x نى قوشۇڭ.
y=\frac{1}{2}\left(3x-4\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=\frac{3}{2}x-2
\frac{1}{2} نى 3x-4 كە كۆپەيتىڭ.
2\left(\frac{3}{2}x-2\right)-x=1
يەنە بىر تەڭلىمە 2y-x=1 دىكى y نىڭ ئورنىغا \frac{3x}{2}-2 نى ئالماشتۇرۇڭ.
3x-4-x=1
2 نى \frac{3x}{2}-2 كە كۆپەيتىڭ.
2x-4=1
3x نى -x گە قوشۇڭ.
2x=5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4 نى قوشۇڭ.
x=\frac{5}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=\frac{3}{2}\times \frac{5}{2}-2
y=\frac{3}{2}x-2 دە \frac{5}{2} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=\frac{15}{4}-2
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{2} نى \frac{5}{2} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
y=\frac{7}{4}
-2 نى \frac{15}{4} گە قوشۇڭ.
y=\frac{7}{4},x=\frac{5}{2}
سىستېما ھەل قىلىندى.
2y-3x=-4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
2y-x=1
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2y-3x=-4,2y-x=1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\2&-1\end{matrix}\right))\left(\begin{matrix}-4\\1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-\left(-3\times 2\right)}&-\frac{-3}{2\left(-1\right)-\left(-3\times 2\right)}\\-\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}&\frac{2}{2\left(-1\right)-\left(-3\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{3}{4}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-4\\1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-4\right)+\frac{3}{4}\\-\frac{1}{2}\left(-4\right)+\frac{1}{2}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4}\\\frac{5}{2}\end{matrix}\right)
ھېسابلاڭ.
y=\frac{7}{4},x=\frac{5}{2}
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
2y-3x=-4
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 3x نى ئېلىڭ.
2y-x=1
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن x نى ئېلىڭ.
2y-3x=-4,2y-x=1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2y-2y-3x+x=-4-1
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2y-3x=-4 دىن 2y-x=1 نى ئېلىڭ.
-3x+x=-4-1
2y نى -2y گە قوشۇڭ. 2y بىلەن -2y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-2x=-4-1
-3x نى x گە قوشۇڭ.
-2x=-5
-4 نى -1 گە قوشۇڭ.
x=\frac{5}{2}
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
2y-\frac{5}{2}=1
2y-x=1 دە \frac{5}{2} نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
2y=\frac{7}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{5}{2} نى قوشۇڭ.
y=\frac{7}{4}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=\frac{7}{4},x=\frac{5}{2}
سىستېما ھەل قىلىندى.