x، y نى يېشىش
x = \frac{85}{22} = 3\frac{19}{22} \approx 3.863636364
y=-\frac{5}{11}\approx -0.454545455
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2x-5y=10,4x+y=15
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x-5y=10
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=5y+10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5y نى قوشۇڭ.
x=\frac{1}{2}\left(5y+10\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{5}{2}y+5
\frac{1}{2} نى 10+5y كە كۆپەيتىڭ.
4\left(\frac{5}{2}y+5\right)+y=15
يەنە بىر تەڭلىمە 4x+y=15 دىكى x نىڭ ئورنىغا 5+\frac{5y}{2} نى ئالماشتۇرۇڭ.
10y+20+y=15
4 نى 5+\frac{5y}{2} كە كۆپەيتىڭ.
11y+20=15
10y نى y گە قوشۇڭ.
11y=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 20 نى ئېلىڭ.
y=-\frac{5}{11}
ھەر ئىككى تەرەپنى 11 گە بۆلۈڭ.
x=\frac{5}{2}\left(-\frac{5}{11}\right)+5
x=\frac{5}{2}y+5 دە -\frac{5}{11} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{25}{22}+5
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{5}{2} نى -\frac{5}{11} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{85}{22}
5 نى -\frac{25}{22} گە قوشۇڭ.
x=\frac{85}{22},y=-\frac{5}{11}
سىستېما ھەل قىلىندى.
2x-5y=10,4x+y=15
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\15\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}2&-5\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
\left(\begin{matrix}2&-5\\4&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-5\\4&1\end{matrix}\right))\left(\begin{matrix}10\\15\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-\left(-5\times 4\right)}&-\frac{-5}{2-\left(-5\times 4\right)}\\-\frac{4}{2-\left(-5\times 4\right)}&\frac{2}{2-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}&\frac{5}{22}\\-\frac{2}{11}&\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}10\\15\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{22}\times 10+\frac{5}{22}\times 15\\-\frac{2}{11}\times 10+\frac{1}{11}\times 15\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{85}{22}\\-\frac{5}{11}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{85}{22},y=-\frac{5}{11}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x-5y=10,4x+y=15
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
4\times 2x+4\left(-5\right)y=4\times 10,2\times 4x+2y=2\times 15
2x بىلەن 4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
8x-20y=40,8x+2y=30
ئاددىيلاشتۇرۇڭ.
8x-8x-20y-2y=40-30
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x-20y=40 دىن 8x+2y=30 نى ئېلىڭ.
-20y-2y=40-30
8x نى -8x گە قوشۇڭ. 8x بىلەن -8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-22y=40-30
-20y نى -2y گە قوشۇڭ.
-22y=10
40 نى -30 گە قوشۇڭ.
y=-\frac{5}{11}
ھەر ئىككى تەرەپنى -22 گە بۆلۈڭ.
4x-\frac{5}{11}=15
4x+y=15 دە -\frac{5}{11} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
4x=\frac{170}{11}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{5}{11} نى قوشۇڭ.
x=\frac{85}{22}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{85}{22},y=-\frac{5}{11}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}