x، y نى يېشىش
x=7
y=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2x+5y=9,2x+y=13
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+5y=9
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-5y+9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 5y نى ئېلىڭ.
x=\frac{1}{2}\left(-5y+9\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{5}{2}y+\frac{9}{2}
\frac{1}{2} نى -5y+9 كە كۆپەيتىڭ.
2\left(-\frac{5}{2}y+\frac{9}{2}\right)+y=13
يەنە بىر تەڭلىمە 2x+y=13 دىكى x نىڭ ئورنىغا \frac{-5y+9}{2} نى ئالماشتۇرۇڭ.
-5y+9+y=13
2 نى \frac{-5y+9}{2} كە كۆپەيتىڭ.
-4y+9=13
-5y نى y گە قوشۇڭ.
-4y=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 9 نى ئېلىڭ.
y=-1
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
x=-\frac{5}{2}\left(-1\right)+\frac{9}{2}
x=-\frac{5}{2}y+\frac{9}{2} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{5+9}{2}
-\frac{5}{2} نى -1 كە كۆپەيتىڭ.
x=7
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{9}{2} نى \frac{5}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=7,y=-1
سىستېما ھەل قىلىندى.
2x+5y=9,2x+y=13
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\13\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&5\\2&1\end{matrix}\right))\left(\begin{matrix}2&5\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\2&1\end{matrix}\right))\left(\begin{matrix}9\\13\end{matrix}\right)
\left(\begin{matrix}2&5\\2&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\2&1\end{matrix}\right))\left(\begin{matrix}9\\13\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\2&1\end{matrix}\right))\left(\begin{matrix}9\\13\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-5\times 2}&-\frac{5}{2-5\times 2}\\-\frac{2}{2-5\times 2}&\frac{2}{2-5\times 2}\end{matrix}\right)\left(\begin{matrix}9\\13\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}&\frac{5}{8}\\\frac{1}{4}&-\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}9\\13\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{8}\times 9+\frac{5}{8}\times 13\\\frac{1}{4}\times 9-\frac{1}{4}\times 13\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-1\end{matrix}\right)
ھېسابلاڭ.
x=7,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x+5y=9,2x+y=13
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x-2x+5y-y=9-13
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x+5y=9 دىن 2x+y=13 نى ئېلىڭ.
5y-y=9-13
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
4y=9-13
5y نى -y گە قوشۇڭ.
4y=-4
9 نى -13 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
2x-1=13
2x+y=13 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
x=7
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=7,y=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}