ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+y=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+4y=5,x+y=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+4y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-4y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 4y نى ئېلىڭ.
x=\frac{1}{2}\left(-4y+5\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-2y+\frac{5}{2}
\frac{1}{2} نى -4y+5 كە كۆپەيتىڭ.
-2y+\frac{5}{2}+y=0
يەنە بىر تەڭلىمە x+y=0 دىكى x نىڭ ئورنىغا -2y+\frac{5}{2} نى ئالماشتۇرۇڭ.
-y+\frac{5}{2}=0
-2y نى y گە قوشۇڭ.
-y=-\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{2} نى ئېلىڭ.
y=\frac{5}{2}
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
x=-2\times \frac{5}{2}+\frac{5}{2}
x=-2y+\frac{5}{2} دە \frac{5}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-5+\frac{5}{2}
-2 نى \frac{5}{2} كە كۆپەيتىڭ.
x=-\frac{5}{2}
\frac{5}{2} نى -5 گە قوشۇڭ.
x=-\frac{5}{2},y=\frac{5}{2}
سىستېما ھەل قىلىندى.
x+y=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+4y=5,x+y=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\0\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}2&4\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
\left(\begin{matrix}2&4\\1&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\1&1\end{matrix}\right))\left(\begin{matrix}5\\0\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4}&-\frac{4}{2-4}\\-\frac{1}{2-4}&\frac{2}{2-4}\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&2\\\frac{1}{2}&-1\end{matrix}\right)\left(\begin{matrix}5\\0\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 5\\\frac{1}{2}\times 5\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{5}{2},y=\frac{5}{2}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+y=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. y نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+4y=5,x+y=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x+4y=5,2x+2y=0
2x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
2x-2x+4y-2y=5
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x+4y=5 دىن 2x+2y=0 نى ئېلىڭ.
4y-2y=5
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
2y=5
4y نى -2y گە قوشۇڭ.
y=\frac{5}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x+\frac{5}{2}=0
x+y=0 دە \frac{5}{2} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{2} نى ئېلىڭ.
x=-\frac{5}{2},y=\frac{5}{2}
سىستېما ھەل قىلىندى.