x، y نى يېشىش
x=\frac{10}{19}\approx 0.526315789
y = \frac{44}{19} = 2\frac{6}{19} \approx 2.315789474
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2x+3y=8,9x+4y=14
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+3y=8
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-3y+8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{2}\left(-3y+8\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{3}{2}y+4
\frac{1}{2} نى -3y+8 كە كۆپەيتىڭ.
9\left(-\frac{3}{2}y+4\right)+4y=14
يەنە بىر تەڭلىمە 9x+4y=14 دىكى x نىڭ ئورنىغا -\frac{3y}{2}+4 نى ئالماشتۇرۇڭ.
-\frac{27}{2}y+36+4y=14
9 نى -\frac{3y}{2}+4 كە كۆپەيتىڭ.
-\frac{19}{2}y+36=14
-\frac{27y}{2} نى 4y گە قوشۇڭ.
-\frac{19}{2}y=-22
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 36 نى ئېلىڭ.
y=\frac{44}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{19}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{2}\times \frac{44}{19}+4
x=-\frac{3}{2}y+4 دە \frac{44}{19} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{66}{19}+4
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{3}{2} نى \frac{44}{19} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{10}{19}
4 نى -\frac{66}{19} گە قوشۇڭ.
x=\frac{10}{19},y=\frac{44}{19}
سىستېما ھەل قىلىندى.
2x+3y=8,9x+4y=14
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&3\\9&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\14\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}2&3\\9&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
\left(\begin{matrix}2&3\\9&4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\9&4\end{matrix}\right))\left(\begin{matrix}8\\14\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{2\times 4-3\times 9}&-\frac{3}{2\times 4-3\times 9}\\-\frac{9}{2\times 4-3\times 9}&\frac{2}{2\times 4-3\times 9}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}&\frac{3}{19}\\\frac{9}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}8\\14\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{19}\times 8+\frac{3}{19}\times 14\\\frac{9}{19}\times 8-\frac{2}{19}\times 14\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{19}\\\frac{44}{19}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{10}{19},y=\frac{44}{19}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x+3y=8,9x+4y=14
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
9\times 2x+9\times 3y=9\times 8,2\times 9x+2\times 4y=2\times 14
2x بىلەن 9x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 9 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
18x+27y=72,18x+8y=28
ئاددىيلاشتۇرۇڭ.
18x-18x+27y-8y=72-28
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 18x+27y=72 دىن 18x+8y=28 نى ئېلىڭ.
27y-8y=72-28
18x نى -18x گە قوشۇڭ. 18x بىلەن -18x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
19y=72-28
27y نى -8y گە قوشۇڭ.
19y=44
72 نى -28 گە قوشۇڭ.
y=\frac{44}{19}
ھەر ئىككى تەرەپنى 19 گە بۆلۈڭ.
9x+4\times \frac{44}{19}=14
9x+4y=14 دە \frac{44}{19} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
9x+\frac{176}{19}=14
4 نى \frac{44}{19} كە كۆپەيتىڭ.
9x=\frac{90}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{176}{19} نى ئېلىڭ.
x=\frac{10}{19}
ھەر ئىككى تەرەپنى 9 گە بۆلۈڭ.
x=\frac{10}{19},y=\frac{44}{19}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}