x، y نى يېشىش
x=\frac{8}{17}\approx 0.470588235
y = \frac{23}{17} = 1\frac{6}{17} \approx 1.352941176
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
7x+2y=6
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2y نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+3y=5,7x+2y=6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+3y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-3y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{2}\left(-3y+5\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{3}{2}y+\frac{5}{2}
\frac{1}{2} نى -3y+5 كە كۆپەيتىڭ.
7\left(-\frac{3}{2}y+\frac{5}{2}\right)+2y=6
يەنە بىر تەڭلىمە 7x+2y=6 دىكى x نىڭ ئورنىغا \frac{-3y+5}{2} نى ئالماشتۇرۇڭ.
-\frac{21}{2}y+\frac{35}{2}+2y=6
7 نى \frac{-3y+5}{2} كە كۆپەيتىڭ.
-\frac{17}{2}y+\frac{35}{2}=6
-\frac{21y}{2} نى 2y گە قوشۇڭ.
-\frac{17}{2}y=-\frac{23}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{35}{2} نى ئېلىڭ.
y=\frac{23}{17}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{17}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{2}\times \frac{23}{17}+\frac{5}{2}
x=-\frac{3}{2}y+\frac{5}{2} دە \frac{23}{17} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{69}{34}+\frac{5}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{3}{2} نى \frac{23}{17} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{8}{17}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{2} نى -\frac{69}{34} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{8}{17},y=\frac{23}{17}
سىستېما ھەل قىلىندى.
7x+2y=6
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2y نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+3y=5,7x+2y=6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}2&3\\7&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
\left(\begin{matrix}2&3\\7&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\7&2\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 7}&-\frac{3}{2\times 2-3\times 7}\\-\frac{7}{2\times 2-3\times 7}&\frac{2}{2\times 2-3\times 7}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{17}&\frac{3}{17}\\\frac{7}{17}&-\frac{2}{17}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{17}\times 5+\frac{3}{17}\times 6\\\frac{7}{17}\times 5-\frac{2}{17}\times 6\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{17}\\\frac{23}{17}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{8}{17},y=\frac{23}{17}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
7x+2y=6
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2y نى ھەر ئىككى تەرەپكە قوشۇڭ.
2x+3y=5,7x+2y=6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
7\times 2x+7\times 3y=7\times 5,2\times 7x+2\times 2y=2\times 6
2x بىلەن 7x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 7 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
14x+21y=35,14x+4y=12
ئاددىيلاشتۇرۇڭ.
14x-14x+21y-4y=35-12
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 14x+21y=35 دىن 14x+4y=12 نى ئېلىڭ.
21y-4y=35-12
14x نى -14x گە قوشۇڭ. 14x بىلەن -14x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
17y=35-12
21y نى -4y گە قوشۇڭ.
17y=23
35 نى -12 گە قوشۇڭ.
y=\frac{23}{17}
ھەر ئىككى تەرەپنى 17 گە بۆلۈڭ.
7x+2\times \frac{23}{17}=6
7x+2y=6 دە \frac{23}{17} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
7x+\frac{46}{17}=6
2 نى \frac{23}{17} كە كۆپەيتىڭ.
7x=\frac{56}{17}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{46}{17} نى ئېلىڭ.
x=\frac{8}{17}
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=\frac{8}{17},y=\frac{23}{17}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}