ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

19x+3y=1,19x+4y=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
19x+3y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
19x=-3y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{19}\left(-3y+1\right)
ھەر ئىككى تەرەپنى 19 گە بۆلۈڭ.
x=-\frac{3}{19}y+\frac{1}{19}
\frac{1}{19} نى -3y+1 كە كۆپەيتىڭ.
19\left(-\frac{3}{19}y+\frac{1}{19}\right)+4y=0
يەنە بىر تەڭلىمە 19x+4y=0 دىكى x نىڭ ئورنىغا \frac{-3y+1}{19} نى ئالماشتۇرۇڭ.
-3y+1+4y=0
19 نى \frac{-3y+1}{19} كە كۆپەيتىڭ.
y+1=0
-3y نى 4y گە قوشۇڭ.
y=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
x=-\frac{3}{19}\left(-1\right)+\frac{1}{19}
x=-\frac{3}{19}y+\frac{1}{19} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{3+1}{19}
-\frac{3}{19} نى -1 كە كۆپەيتىڭ.
x=\frac{4}{19}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{19} نى \frac{3}{19} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{4}{19},y=-1
سىستېما ھەل قىلىندى.
19x+3y=1,19x+4y=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}19&3\\19&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}19&3\\19&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
\left(\begin{matrix}19&3\\19&4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}19&3\\19&4\end{matrix}\right))\left(\begin{matrix}1\\0\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19\times 4-3\times 19}&-\frac{3}{19\times 4-3\times 19}\\-\frac{19}{19\times 4-3\times 19}&\frac{19}{19\times 4-3\times 19}\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}&-\frac{3}{19}\\-1&1\end{matrix}\right)\left(\begin{matrix}1\\0\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}\\-1\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
x=\frac{4}{19},y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
19x+3y=1,19x+4y=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
19x-19x+3y-4y=1
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 19x+3y=1 دىن 19x+4y=0 نى ئېلىڭ.
3y-4y=1
19x نى -19x گە قوشۇڭ. 19x بىلەن -19x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-y=1
3y نى -4y گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
19x+4\left(-1\right)=0
19x+4y=0 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
19x-4=0
4 نى -1 كە كۆپەيتىڭ.
19x=4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 4 نى قوشۇڭ.
x=\frac{4}{19}
ھەر ئىككى تەرەپنى 19 گە بۆلۈڭ.
x=\frac{4}{19},y=-1
سىستېما ھەل قىلىندى.