ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

12x+3y=5,3x+2y=70
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
12x+3y=5
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
12x=-3y+5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{12}\left(-3y+5\right)
ھەر ئىككى تەرەپنى 12 گە بۆلۈڭ.
x=-\frac{1}{4}y+\frac{5}{12}
\frac{1}{12} نى -3y+5 كە كۆپەيتىڭ.
3\left(-\frac{1}{4}y+\frac{5}{12}\right)+2y=70
يەنە بىر تەڭلىمە 3x+2y=70 دىكى x نىڭ ئورنىغا -\frac{y}{4}+\frac{5}{12} نى ئالماشتۇرۇڭ.
-\frac{3}{4}y+\frac{5}{4}+2y=70
3 نى -\frac{y}{4}+\frac{5}{12} كە كۆپەيتىڭ.
\frac{5}{4}y+\frac{5}{4}=70
-\frac{3y}{4} نى 2y گە قوشۇڭ.
\frac{5}{4}y=\frac{275}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5}{4} نى ئېلىڭ.
y=55
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{5}{4} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{1}{4}\times 55+\frac{5}{12}
x=-\frac{1}{4}y+\frac{5}{12} دە 55 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-\frac{55}{4}+\frac{5}{12}
-\frac{1}{4} نى 55 كە كۆپەيتىڭ.
x=-\frac{40}{3}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{5}{12} نى -\frac{55}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-\frac{40}{3},y=55
سىستېما ھەل قىلىندى.
12x+3y=5,3x+2y=70
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\70\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}12&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
\left(\begin{matrix}12&3\\3&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}12&3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\70\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{12\times 2-3\times 3}&-\frac{3}{12\times 2-3\times 3}\\-\frac{3}{12\times 2-3\times 3}&\frac{12}{12\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}&-\frac{1}{5}\\-\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}5\\70\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{15}\times 5-\frac{1}{5}\times 70\\-\frac{1}{5}\times 5+\frac{4}{5}\times 70\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{40}{3}\\55\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{40}{3},y=55
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
12x+3y=5,3x+2y=70
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 12x+3\times 3y=3\times 5,12\times 3x+12\times 2y=12\times 70
12x بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 12 گە كۆپەيتىڭ.
36x+9y=15,36x+24y=840
ئاددىيلاشتۇرۇڭ.
36x-36x+9y-24y=15-840
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 36x+9y=15 دىن 36x+24y=840 نى ئېلىڭ.
9y-24y=15-840
36x نى -36x گە قوشۇڭ. 36x بىلەن -36x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-15y=15-840
9y نى -24y گە قوشۇڭ.
-15y=-825
15 نى -840 گە قوشۇڭ.
y=55
ھەر ئىككى تەرەپنى -15 گە بۆلۈڭ.
3x+2\times 55=70
3x+2y=70 دە 55 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x+110=70
2 نى 55 كە كۆپەيتىڭ.
3x=-40
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 110 نى ئېلىڭ.
x=-\frac{40}{3}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=-\frac{40}{3},y=55
سىستېما ھەل قىلىندى.