ئاساسىي مەزمۇنغا ئاتلاش
r، s نى يېشىش
Tick mark Image

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

2r-3s=1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3r+2s=4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2r-3s=1,3r+2s=4
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2r-3s=1
تەڭلىمىدىن بىرنى تالاپ، r نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق r نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2r=3s+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3s نى قوشۇڭ.
r=\frac{1}{2}\left(3s+1\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
r=\frac{3}{2}s+\frac{1}{2}
\frac{1}{2} نى 3s+1 كە كۆپەيتىڭ.
3\left(\frac{3}{2}s+\frac{1}{2}\right)+2s=4
يەنە بىر تەڭلىمە 3r+2s=4 دىكى r نىڭ ئورنىغا \frac{3s+1}{2} نى ئالماشتۇرۇڭ.
\frac{9}{2}s+\frac{3}{2}+2s=4
3 نى \frac{3s+1}{2} كە كۆپەيتىڭ.
\frac{13}{2}s+\frac{3}{2}=4
\frac{9s}{2} نى 2s گە قوشۇڭ.
\frac{13}{2}s=\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3}{2} نى ئېلىڭ.
s=\frac{5}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{13}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
r=\frac{3}{2}\times \frac{5}{13}+\frac{1}{2}
r=\frac{3}{2}s+\frac{1}{2} دە \frac{5}{13} نى s گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، r نى بىۋاسىتە يېشەلەيسىز.
r=\frac{15}{26}+\frac{1}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{3}{2} نى \frac{5}{13} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
r=\frac{14}{13}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{1}{2} نى \frac{15}{26} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
r=\frac{14}{13},s=\frac{5}{13}
سىستېما ھەل قىلىندى.
2r-3s=1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3r+2s=4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2r-3s=1,3r+2s=4
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}1\\4\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}r\\s\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}1\\4\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}1\\4\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}+\frac{3}{13}\times 4\\-\frac{3}{13}+\frac{2}{13}\times 4\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}r\\s\end{matrix}\right)=\left(\begin{matrix}\frac{14}{13}\\\frac{5}{13}\end{matrix}\right)
ھېسابلاڭ.
r=\frac{14}{13},s=\frac{5}{13}
ماترىتسا ئېلېمېنتلىرى r ۋە s نى يېيىڭ.
2r-3s=1
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3r+2s=4
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
2r-3s=1,3r+2s=4
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times 2r+3\left(-3\right)s=3,2\times 3r+2\times 2s=2\times 4
2r بىلەن 3r نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
6r-9s=3,6r+4s=8
ئاددىيلاشتۇرۇڭ.
6r-6r-9s-4s=3-8
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 6r-9s=3 دىن 6r+4s=8 نى ئېلىڭ.
-9s-4s=3-8
6r نى -6r گە قوشۇڭ. 6r بىلەن -6r يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-13s=3-8
-9s نى -4s گە قوشۇڭ.
-13s=-5
3 نى -8 گە قوشۇڭ.
s=\frac{5}{13}
ھەر ئىككى تەرەپنى -13 گە بۆلۈڭ.
3r+2\times \frac{5}{13}=4
3r+2s=4 دە \frac{5}{13} نى s گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، r نى بىۋاسىتە يېشەلەيسىز.
3r+\frac{10}{13}=4
2 نى \frac{5}{13} كە كۆپەيتىڭ.
3r=\frac{42}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{10}{13} نى ئېلىڭ.
r=\frac{14}{13}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
r=\frac{14}{13},s=\frac{5}{13}
سىستېما ھەل قىلىندى.