ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

0.4x+0.3y=1.7,0.7x-0.2y=0.8
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
0.4x+0.3y=1.7
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
0.4x=-0.3y+1.7
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{3y}{10} نى ئېلىڭ.
x=2.5\left(-0.3y+1.7\right)
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 0.4 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-0.75y+4.25
2.5 نى \frac{-3y+17}{10} كە كۆپەيتىڭ.
0.7\left(-0.75y+4.25\right)-0.2y=0.8
يەنە بىر تەڭلىمە 0.7x-0.2y=0.8 دىكى x نىڭ ئورنىغا \frac{-3y+17}{4} نى ئالماشتۇرۇڭ.
-0.525y+2.975-0.2y=0.8
0.7 نى \frac{-3y+17}{4} كە كۆپەيتىڭ.
-0.725y+2.975=0.8
-\frac{21y}{40} نى -\frac{y}{5} گە قوشۇڭ.
-0.725y=-2.175
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 2.975 نى ئېلىڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -0.725 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-0.75\times 3+4.25
x=-0.75y+4.25 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-9+17}{4}
-0.75 نى 3 كە كۆپەيتىڭ.
x=2
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق 4.25 نى -2.25 گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=2,y=3
سىستېما ھەل قىلىندى.
0.4x+0.3y=1.7,0.7x-0.2y=0.8
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.4&0.3\\0.7&-0.2\end{matrix}\right))\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{0.2}{0.4\left(-0.2\right)-0.3\times 0.7}&-\frac{0.3}{0.4\left(-0.2\right)-0.3\times 0.7}\\-\frac{0.7}{0.4\left(-0.2\right)-0.3\times 0.7}&\frac{0.4}{0.4\left(-0.2\right)-0.3\times 0.7}\end{matrix}\right)\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{29}&\frac{30}{29}\\\frac{70}{29}&-\frac{40}{29}\end{matrix}\right)\left(\begin{matrix}1.7\\0.8\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{20}{29}\times 1.7+\frac{30}{29}\times 0.8\\\frac{70}{29}\times 1.7-\frac{40}{29}\times 0.8\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
ھېسابلاڭ.
x=2,y=3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
0.4x+0.3y=1.7,0.7x-0.2y=0.8
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
0.7\times 0.4x+0.7\times 0.3y=0.7\times 1.7,0.4\times 0.7x+0.4\left(-0.2\right)y=0.4\times 0.8
\frac{2x}{5} بىلەن \frac{7x}{10} نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 0.7 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 0.4 گە كۆپەيتىڭ.
0.28x+0.21y=1.19,0.28x-0.08y=0.32
ئاددىيلاشتۇرۇڭ.
0.28x-0.28x+0.21y+0.08y=1.19-0.32
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 0.28x+0.21y=1.19 دىن 0.28x-0.08y=0.32 نى ئېلىڭ.
0.21y+0.08y=1.19-0.32
\frac{7x}{25} نى -\frac{7x}{25} گە قوشۇڭ. \frac{7x}{25} بىلەن -\frac{7x}{25} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
0.29y=1.19-0.32
\frac{21y}{100} نى \frac{2y}{25} گە قوشۇڭ.
0.29y=0.87
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق 1.19 نى -0.32 گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 0.29 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
0.7x-0.2\times 3=0.8
0.7x-0.2y=0.8 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
0.7x-0.6=0.8
-0.2 نى 3 كە كۆپەيتىڭ.
0.7x=1.4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 0.6 نى قوشۇڭ.
x=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 0.7 گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=2,y=3
سىستېما ھەل قىلىندى.