b، c نى يېشىش
b=-\frac{2}{3}\approx -0.666666667
c=-1
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\frac{1}{3}-b+c=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
-b+c=-\frac{1}{3}
ھەر ئىككى تەرەپتىن \frac{1}{3} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3+3b+c=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3b+c=-3
ھەر ئىككى تەرەپتىن 3 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
-b+c=-\frac{1}{3},3b+c=-3
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-b+c=-\frac{1}{3}
تەڭلىمىدىن بىرنى تالاپ، b نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق b نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-b=-c-\frac{1}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن c نى ئېلىڭ.
b=-\left(-c-\frac{1}{3}\right)
ھەر ئىككى تەرەپنى -1 گە بۆلۈڭ.
b=c+\frac{1}{3}
-1 نى -c-\frac{1}{3} كە كۆپەيتىڭ.
3\left(c+\frac{1}{3}\right)+c=-3
يەنە بىر تەڭلىمە 3b+c=-3 دىكى b نىڭ ئورنىغا c+\frac{1}{3} نى ئالماشتۇرۇڭ.
3c+1+c=-3
3 نى c+\frac{1}{3} كە كۆپەيتىڭ.
4c+1=-3
3c نى c گە قوشۇڭ.
4c=-4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
c=-1
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
b=-1+\frac{1}{3}
b=c+\frac{1}{3} دە -1 نى c گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، b نى بىۋاسىتە يېشەلەيسىز.
b=-\frac{2}{3}
\frac{1}{3} نى -1 گە قوشۇڭ.
b=-\frac{2}{3},c=-1
سىستېما ھەل قىلىندى.
\frac{1}{3}-b+c=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
-b+c=-\frac{1}{3}
ھەر ئىككى تەرەپتىن \frac{1}{3} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3+3b+c=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3b+c=-3
ھەر ئىككى تەرەپتىن 3 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
-b+c=-\frac{1}{3},3b+c=-3
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-1&1\\3&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-1&1\\3&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
\left(\begin{matrix}-1&1\\3&1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}-1&1\\3&1\end{matrix}\right))\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{-1-3}&-\frac{1}{-1-3}\\-\frac{3}{-1-3}&-\frac{1}{-1-3}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-\frac{1}{3}\\-3\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\left(-\frac{1}{3}\right)+\frac{1}{4}\left(-3\right)\\\frac{3}{4}\left(-\frac{1}{3}\right)+\frac{1}{4}\left(-3\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\\-1\end{matrix}\right)
ھېسابلاڭ.
b=-\frac{2}{3},c=-1
ماترىتسا ئېلېمېنتلىرى b ۋە c نى يېيىڭ.
\frac{1}{3}-b+c=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
-b+c=-\frac{1}{3}
ھەر ئىككى تەرەپتىن \frac{1}{3} نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
3+3b+c=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
3b+c=-3
ھەر ئىككى تەرەپتىن 3 نى ئېلىڭ. نۆلدىن ھەرقانداق سان ئېلىنسا، شۇ ساننىڭ مەنپىيسى چىقىدۇ.
-b+c=-\frac{1}{3},3b+c=-3
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-b-3b+c-c=-\frac{1}{3}+3
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -b+c=-\frac{1}{3} دىن 3b+c=-3 نى ئېلىڭ.
-b-3b=-\frac{1}{3}+3
c نى -c گە قوشۇڭ. c بىلەن -c يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4b=-\frac{1}{3}+3
-b نى -3b گە قوشۇڭ.
-4b=\frac{8}{3}
-\frac{1}{3} نى 3 گە قوشۇڭ.
b=-\frac{2}{3}
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
3\left(-\frac{2}{3}\right)+c=-3
3b+c=-3 دە -\frac{2}{3} نى b گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، c نى بىۋاسىتە يېشەلەيسىز.
-2+c=-3
3 نى -\frac{2}{3} كە كۆپەيتىڭ.
c=-1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2 نى قوشۇڭ.
b=-\frac{2}{3},c=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}