x، y نى يېشىش
x=0
y=-5
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-8x-6y=30,-6x+2y=-10
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-8x-6y=30
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-8x=6y+30
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6y نى قوشۇڭ.
x=-\frac{1}{8}\left(6y+30\right)
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
x=-\frac{3}{4}y-\frac{15}{4}
-\frac{1}{8} نى 30+6y كە كۆپەيتىڭ.
-6\left(-\frac{3}{4}y-\frac{15}{4}\right)+2y=-10
يەنە بىر تەڭلىمە -6x+2y=-10 دىكى x نىڭ ئورنىغا \frac{-3y-15}{4} نى ئالماشتۇرۇڭ.
\frac{9}{2}y+\frac{45}{2}+2y=-10
-6 نى \frac{-3y-15}{4} كە كۆپەيتىڭ.
\frac{13}{2}y+\frac{45}{2}=-10
\frac{9y}{2} نى 2y گە قوشۇڭ.
\frac{13}{2}y=-\frac{65}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{45}{2} نى ئېلىڭ.
y=-5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{13}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{4}\left(-5\right)-\frac{15}{4}
x=-\frac{3}{4}y-\frac{15}{4} دە -5 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{15-15}{4}
-\frac{3}{4} نى -5 كە كۆپەيتىڭ.
x=0
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{15}{4} نى \frac{15}{4} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=0,y=-5
سىستېما ھەل قىلىندى.
-8x-6y=30,-6x+2y=-10
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\-10\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\-6&2\end{matrix}\right))\left(\begin{matrix}30\\-10\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}\\-\frac{-6}{-8\times 2-\left(-6\left(-6\right)\right)}&-\frac{8}{-8\times 2-\left(-6\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}&-\frac{3}{26}\\-\frac{3}{26}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}30\\-10\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{26}\times 30-\frac{3}{26}\left(-10\right)\\-\frac{3}{26}\times 30+\frac{2}{13}\left(-10\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
ھېسابلاڭ.
x=0,y=-5
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-8x-6y=30,-6x+2y=-10
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-6\left(-8\right)x-6\left(-6\right)y=-6\times 30,-8\left(-6\right)x-8\times 2y=-8\left(-10\right)
-8x بىلەن -6x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -6 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -8 گە كۆپەيتىڭ.
48x+36y=-180,48x-16y=80
ئاددىيلاشتۇرۇڭ.
48x-48x+36y+16y=-180-80
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 48x+36y=-180 دىن 48x-16y=80 نى ئېلىڭ.
36y+16y=-180-80
48x نى -48x گە قوشۇڭ. 48x بىلەن -48x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
52y=-180-80
36y نى 16y گە قوشۇڭ.
52y=-260
-180 نى -80 گە قوشۇڭ.
y=-5
ھەر ئىككى تەرەپنى 52 گە بۆلۈڭ.
-6x+2\left(-5\right)=-10
-6x+2y=-10 دە -5 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-6x-10=-10
2 نى -5 كە كۆپەيتىڭ.
-6x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 10 نى قوشۇڭ.
x=0
ھەر ئىككى تەرەپنى -6 گە بۆلۈڭ.
x=0,y=-5
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}