x، y نى يېشىش
x=9
y=9
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-8x+7y=-9,-9x+7y=-18
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-8x+7y=-9
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-8x=-7y-9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 7y نى ئېلىڭ.
x=-\frac{1}{8}\left(-7y-9\right)
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
x=\frac{7}{8}y+\frac{9}{8}
-\frac{1}{8} نى -7y-9 كە كۆپەيتىڭ.
-9\left(\frac{7}{8}y+\frac{9}{8}\right)+7y=-18
يەنە بىر تەڭلىمە -9x+7y=-18 دىكى x نىڭ ئورنىغا \frac{7y+9}{8} نى ئالماشتۇرۇڭ.
-\frac{63}{8}y-\frac{81}{8}+7y=-18
-9 نى \frac{7y+9}{8} كە كۆپەيتىڭ.
-\frac{7}{8}y-\frac{81}{8}=-18
-\frac{63y}{8} نى 7y گە قوشۇڭ.
-\frac{7}{8}y=-\frac{63}{8}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{81}{8} نى قوشۇڭ.
y=9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{7}{8} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{7}{8}\times 9+\frac{9}{8}
x=\frac{7}{8}y+\frac{9}{8} دە 9 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{63+9}{8}
\frac{7}{8} نى 9 كە كۆپەيتىڭ.
x=9
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{9}{8} نى \frac{63}{8} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=9,y=9
سىستېما ھەل قىلىندى.
-8x+7y=-9,-9x+7y=-18
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-18\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&7\\-9&7\end{matrix}\right))\left(\begin{matrix}-9\\-18\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{-8\times 7-7\left(-9\right)}&-\frac{7}{-8\times 7-7\left(-9\right)}\\-\frac{-9}{-8\times 7-7\left(-9\right)}&-\frac{8}{-8\times 7-7\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-18\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\\frac{9}{7}&-\frac{8}{7}\end{matrix}\right)\left(\begin{matrix}-9\\-18\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9-\left(-18\right)\\\frac{9}{7}\left(-9\right)-\frac{8}{7}\left(-18\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\9\end{matrix}\right)
ھېسابلاڭ.
x=9,y=9
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-8x+7y=-9,-9x+7y=-18
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-8x+9x+7y-7y=-9+18
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -8x+7y=-9 دىن -9x+7y=-18 نى ئېلىڭ.
-8x+9x=-9+18
7y نى -7y گە قوشۇڭ. 7y بىلەن -7y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
x=-9+18
-8x نى 9x گە قوشۇڭ.
x=9
-9 نى 18 گە قوشۇڭ.
-9\times 9+7y=-18
-9x+7y=-18 دە 9 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
-81+7y=-18
-9 نى 9 كە كۆپەيتىڭ.
7y=63
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 81 نى قوشۇڭ.
y=9
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=9,y=9
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}