ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

-7x-8y=-2,-5x+8y=26
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-7x-8y=-2
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-7x=8y-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8y نى قوشۇڭ.
x=-\frac{1}{7}\left(8y-2\right)
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
x=-\frac{8}{7}y+\frac{2}{7}
-\frac{1}{7} نى 8y-2 كە كۆپەيتىڭ.
-5\left(-\frac{8}{7}y+\frac{2}{7}\right)+8y=26
يەنە بىر تەڭلىمە -5x+8y=26 دىكى x نىڭ ئورنىغا \frac{-8y+2}{7} نى ئالماشتۇرۇڭ.
\frac{40}{7}y-\frac{10}{7}+8y=26
-5 نى \frac{-8y+2}{7} كە كۆپەيتىڭ.
\frac{96}{7}y-\frac{10}{7}=26
\frac{40y}{7} نى 8y گە قوشۇڭ.
\frac{96}{7}y=\frac{192}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{10}{7} نى قوشۇڭ.
y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{96}{7} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{8}{7}\times 2+\frac{2}{7}
x=-\frac{8}{7}y+\frac{2}{7} دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-16+2}{7}
-\frac{8}{7} نى 2 كە كۆپەيتىڭ.
x=-2
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{2}{7} نى -\frac{16}{7} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-2,y=2
سىستېما ھەل قىلىندى.
-7x-8y=-2,-5x+8y=26
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\26\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-7&-8\\-5&8\end{matrix}\right))\left(\begin{matrix}-2\\26\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-7\times 8-\left(-8\left(-5\right)\right)}&-\frac{-8}{-7\times 8-\left(-8\left(-5\right)\right)}\\-\frac{-5}{-7\times 8-\left(-8\left(-5\right)\right)}&-\frac{7}{-7\times 8-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-2\\26\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}&-\frac{1}{12}\\-\frac{5}{96}&\frac{7}{96}\end{matrix}\right)\left(\begin{matrix}-2\\26\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{12}\left(-2\right)-\frac{1}{12}\times 26\\-\frac{5}{96}\left(-2\right)+\frac{7}{96}\times 26\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
ھېسابلاڭ.
x=-2,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-7x-8y=-2,-5x+8y=26
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-5\left(-7\right)x-5\left(-8\right)y=-5\left(-2\right),-7\left(-5\right)x-7\times 8y=-7\times 26
-7x بىلەن -5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -7 گە كۆپەيتىڭ.
35x+40y=10,35x-56y=-182
ئاددىيلاشتۇرۇڭ.
35x-35x+40y+56y=10+182
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 35x+40y=10 دىن 35x-56y=-182 نى ئېلىڭ.
40y+56y=10+182
35x نى -35x گە قوشۇڭ. 35x بىلەن -35x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
96y=10+182
40y نى 56y گە قوشۇڭ.
96y=192
10 نى 182 گە قوشۇڭ.
y=2
ھەر ئىككى تەرەپنى 96 گە بۆلۈڭ.
-5x+8\times 2=26
-5x+8y=26 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-5x+16=26
8 نى 2 كە كۆپەيتىڭ.
-5x=10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 16 نى ئېلىڭ.
x=-2
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x=-2,y=2
سىستېما ھەل قىلىندى.