ئاساسىي مەزمۇنغا ئاتلاش
x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

6x^{2}+x-2\geq 0
تەڭسىزلىكنى -1 گە كۆپەيتىپ، -6x^{2}-x+2 نىڭ ئەڭ چوڭ دەرىجىسىنىڭ كوئېففىتسېنتىنى مۇسبەت سانغا ئۆزگەرتىڭ. -1 مەنپىي بولغاچقا، تەڭسىزلىكنىڭ يۆنىلىشى ئۆزگەرتىلدى.
6x^{2}+x-2=0
تەڭسىزلىكنى يېشىش ئۈچۈن سول تەرەپنى كۆپەيتىڭ. x_{1} ۋە x_{2} كىۋادرات تەڭلىمە ax^{2}+bx+c=0 نىڭ يەشمىسى بولغاندا، كۋادراتلىق كۆپ ئەزالىقنى ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) گە ئۆزگەرتىپ يېشىشكە بولىدۇ.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-2\right)}}{2\times 6}
ax^{2}+bx+c=0 شەكلىدىكى بارلىق تەڭلىمىنى \frac{-b±\sqrt{b^{2}-4ac}}{2a} دېگەن كىۋادراتلىق فورمۇلا ئارقىلىق يېشىشكە بولىدۇ. كىۋادراتلىق فورمۇلادىكى 6 نى a گە، 1 نى b گە ۋە -2 نى c گە ئالماشتۇرۇڭ.
x=\frac{-1±7}{12}
ھېسابلاڭ.
x=\frac{1}{2} x=-\frac{2}{3}
x=\frac{-1±7}{12} دېگەن تەڭلىمىنى ± پىلۇس ۋە ± مىنۇس بولغان ئەھۋاللار ئۈچۈن يېشىڭ.
6\left(x-\frac{1}{2}\right)\left(x+\frac{2}{3}\right)\geq 0
ئېرىشكەن يېشىش ئۇسۇلى ئارقىلىق تەڭسىزلىكنى قايتا يېزىڭ.
x-\frac{1}{2}\leq 0 x+\frac{2}{3}\leq 0
ھاسىلاتنىڭ ≥0 بولۇشى ئۈچۈن x-\frac{1}{2} ۋە x+\frac{2}{3} نىڭ ھەر ئىككىسى ≤0 ياكى ھەر ئىككىسى ≥0 بولۇشى كېرەك. x-\frac{1}{2} بىلەن x+\frac{2}{3} نىڭ ھەر ئىككىسى ≤0 بولغان ئەھۋالنى ئويلىشىڭ.
x\leq -\frac{2}{3}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\leq -\frac{2}{3} دۇر.
x+\frac{2}{3}\geq 0 x-\frac{1}{2}\geq 0
x-\frac{1}{2} بىلەن x+\frac{2}{3} نىڭ ھەر ئىككىسى ≥0 بولغان ئەھۋالنى ئويلىشىڭ.
x\geq \frac{1}{2}
ھەر ئىككى تەڭسىزلىكنى قانائەتلەندۈرىدىغان يېشىم x\geq \frac{1}{2} دۇر.
x\leq -\frac{2}{3}\text{; }x\geq \frac{1}{2}
ئاخىرقى يېشىم ئېرىشكەن يېشىملەرنىڭ بىرىكمىسىدۇر.