x، y نى يېشىش
x=0
y=-1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-5x-8y=8,-5x+6y=-6
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-5x-8y=8
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-5x=8y+8
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 8y نى قوشۇڭ.
x=-\frac{1}{5}\left(8y+8\right)
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x=-\frac{8}{5}y-\frac{8}{5}
-\frac{1}{5} نى 8+8y كە كۆپەيتىڭ.
-5\left(-\frac{8}{5}y-\frac{8}{5}\right)+6y=-6
يەنە بىر تەڭلىمە -5x+6y=-6 دىكى x نىڭ ئورنىغا \frac{-8y-8}{5} نى ئالماشتۇرۇڭ.
8y+8+6y=-6
-5 نى \frac{-8y-8}{5} كە كۆپەيتىڭ.
14y+8=-6
8y نى 6y گە قوشۇڭ.
14y=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8 نى ئېلىڭ.
y=-1
ھەر ئىككى تەرەپنى 14 گە بۆلۈڭ.
x=-\frac{8}{5}\left(-1\right)-\frac{8}{5}
x=-\frac{8}{5}y-\frac{8}{5} دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{8-8}{5}
-\frac{8}{5} نى -1 كە كۆپەيتىڭ.
x=0
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{8}{5} نى \frac{8}{5} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=0,y=-1
سىستېما ھەل قىلىندى.
-5x-8y=8,-5x+6y=-6
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-6\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-5&-8\\-5&6\end{matrix}\right))\left(\begin{matrix}8\\-6\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{-5\times 6-\left(-8\left(-5\right)\right)}&-\frac{-8}{-5\times 6-\left(-8\left(-5\right)\right)}\\-\frac{-5}{-5\times 6-\left(-8\left(-5\right)\right)}&-\frac{5}{-5\times 6-\left(-8\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-6\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{35}&-\frac{4}{35}\\-\frac{1}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}8\\-6\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{35}\times 8-\frac{4}{35}\left(-6\right)\\-\frac{1}{14}\times 8+\frac{1}{14}\left(-6\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
ھېسابلاڭ.
x=0,y=-1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-5x-8y=8,-5x+6y=-6
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-5x+5x-8y-6y=8+6
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -5x-8y=8 دىن -5x+6y=-6 نى ئېلىڭ.
-8y-6y=8+6
-5x نى 5x گە قوشۇڭ. -5x بىلەن 5x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-14y=8+6
-8y نى -6y گە قوشۇڭ.
-14y=14
8 نى 6 گە قوشۇڭ.
y=-1
ھەر ئىككى تەرەپنى -14 گە بۆلۈڭ.
-5x+6\left(-1\right)=-6
-5x+6y=-6 دە -1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-5x-6=-6
6 نى -1 كە كۆپەيتىڭ.
-5x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نى قوشۇڭ.
x=0
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x=0,y=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}