x، y نى يېشىش
x=3
y=2
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-3x+3y=-3,x-9y=-15
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-3x+3y=-3
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-3x=-3y-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=-\frac{1}{3}\left(-3y-3\right)
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
x=y+1
-\frac{1}{3} نى -3y-3 كە كۆپەيتىڭ.
y+1-9y=-15
يەنە بىر تەڭلىمە x-9y=-15 دىكى x نىڭ ئورنىغا y+1 نى ئالماشتۇرۇڭ.
-8y+1=-15
y نى -9y گە قوشۇڭ.
-8y=-16
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
y=2
ھەر ئىككى تەرەپنى -8 گە بۆلۈڭ.
x=2+1
x=y+1 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=3
1 نى 2 گە قوشۇڭ.
x=3,y=2
سىستېما ھەل قىلىندى.
-3x+3y=-3,x-9y=-15
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-15\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&3\\1&-9\end{matrix}\right))\left(\begin{matrix}-3\\-15\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\\-\frac{1}{-3\left(-9\right)-3}&-\frac{3}{-3\left(-9\right)-3}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}&-\frac{1}{8}\\-\frac{1}{24}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}-3\\-15\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{8}\left(-3\right)-\frac{1}{8}\left(-15\right)\\-\frac{1}{24}\left(-3\right)-\frac{1}{8}\left(-15\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
ھېسابلاڭ.
x=3,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-3x+3y=-3,x-9y=-15
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3x+3y=-3,-3x-3\left(-9\right)y=-3\left(-15\right)
-3x بىلەن x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 1 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -3 گە كۆپەيتىڭ.
-3x+3y=-3,-3x+27y=45
ئاددىيلاشتۇرۇڭ.
-3x+3x+3y-27y=-3-45
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -3x+3y=-3 دىن -3x+27y=45 نى ئېلىڭ.
3y-27y=-3-45
-3x نى 3x گە قوشۇڭ. -3x بىلەن 3x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-24y=-3-45
3y نى -27y گە قوشۇڭ.
-24y=-48
-3 نى -45 گە قوشۇڭ.
y=2
ھەر ئىككى تەرەپنى -24 گە بۆلۈڭ.
x-9\times 2=-15
x-9y=-15 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x-18=-15
-9 نى 2 كە كۆپەيتىڭ.
x=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 18 نى قوشۇڭ.
x=3,y=2
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}