ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

-3x+10y=1,2x-y=5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-3x+10y=1
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-3x=-10y+1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 10y نى ئېلىڭ.
x=-\frac{1}{3}\left(-10y+1\right)
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
x=\frac{10}{3}y-\frac{1}{3}
-\frac{1}{3} نى -10y+1 كە كۆپەيتىڭ.
2\left(\frac{10}{3}y-\frac{1}{3}\right)-y=5
يەنە بىر تەڭلىمە 2x-y=5 دىكى x نىڭ ئورنىغا \frac{10y-1}{3} نى ئالماشتۇرۇڭ.
\frac{20}{3}y-\frac{2}{3}-y=5
2 نى \frac{10y-1}{3} كە كۆپەيتىڭ.
\frac{17}{3}y-\frac{2}{3}=5
\frac{20y}{3} نى -y گە قوشۇڭ.
\frac{17}{3}y=\frac{17}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{2}{3} نى قوشۇڭ.
y=1
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{17}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{10-1}{3}
x=\frac{10}{3}y-\frac{1}{3} دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{1}{3} نى \frac{10}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=3,y=1
سىستېما ھەل قىلىندى.
-3x+10y=1,2x-y=5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right))\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-3&10\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-3\left(-1\right)-10\times 2}&-\frac{10}{-3\left(-1\right)-10\times 2}\\-\frac{2}{-3\left(-1\right)-10\times 2}&-\frac{3}{-3\left(-1\right)-10\times 2}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{10}{17}\\\frac{2}{17}&\frac{3}{17}\end{matrix}\right)\left(\begin{matrix}1\\5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}+\frac{10}{17}\times 5\\\frac{2}{17}+\frac{3}{17}\times 5\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\1\end{matrix}\right)
ھېسابلاڭ.
x=3,y=1
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-3x+10y=1,2x-y=5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2\left(-3\right)x+2\times 10y=2,-3\times 2x-3\left(-1\right)y=-3\times 5
-3x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -3 گە كۆپەيتىڭ.
-6x+20y=2,-6x+3y=-15
ئاددىيلاشتۇرۇڭ.
-6x+6x+20y-3y=2+15
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -6x+20y=2 دىن -6x+3y=-15 نى ئېلىڭ.
20y-3y=2+15
-6x نى 6x گە قوشۇڭ. -6x بىلەن 6x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
17y=2+15
20y نى -3y گە قوشۇڭ.
17y=17
2 نى 15 گە قوشۇڭ.
y=1
ھەر ئىككى تەرەپنى 17 گە بۆلۈڭ.
2x-1=5
2x-y=5 دە 1 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x=6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1 نى قوشۇڭ.
x=3
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=3,y=1
سىستېما ھەل قىلىندى.