x، y نى يېشىش
x=-\frac{1}{11}\approx -0.090909091
y=\frac{6}{11}\approx 0.545454545
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-2x+7y=4,-4x+3y=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-2x+7y=4
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-2x=-7y+4
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 7y نى ئېلىڭ.
x=-\frac{1}{2}\left(-7y+4\right)
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x=\frac{7}{2}y-2
-\frac{1}{2} نى -7y+4 كە كۆپەيتىڭ.
-4\left(\frac{7}{2}y-2\right)+3y=2
يەنە بىر تەڭلىمە -4x+3y=2 دىكى x نىڭ ئورنىغا \frac{7y}{2}-2 نى ئالماشتۇرۇڭ.
-14y+8+3y=2
-4 نى \frac{7y}{2}-2 كە كۆپەيتىڭ.
-11y+8=2
-14y نى 3y گە قوشۇڭ.
-11y=-6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 8 نى ئېلىڭ.
y=\frac{6}{11}
ھەر ئىككى تەرەپنى -11 گە بۆلۈڭ.
x=\frac{7}{2}\times \frac{6}{11}-2
x=\frac{7}{2}y-2 دە \frac{6}{11} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{21}{11}-2
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق \frac{7}{2} نى \frac{6}{11} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=-\frac{1}{11}
-2 نى \frac{21}{11} گە قوشۇڭ.
x=-\frac{1}{11},y=\frac{6}{11}
سىستېما ھەل قىلىندى.
-2x+7y=4,-4x+3y=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right))\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&7\\-4&3\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-2\times 3-7\left(-4\right)}&-\frac{7}{-2\times 3-7\left(-4\right)}\\-\frac{-4}{-2\times 3-7\left(-4\right)}&-\frac{2}{-2\times 3-7\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}&-\frac{7}{22}\\\frac{2}{11}&-\frac{1}{11}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{22}\times 4-\frac{7}{22}\times 2\\\frac{2}{11}\times 4-\frac{1}{11}\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\\\frac{6}{11}\end{matrix}\right)
ھېسابلاڭ.
x=-\frac{1}{11},y=\frac{6}{11}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-2x+7y=4,-4x+3y=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-4\left(-2\right)x-4\times 7y=-4\times 4,-2\left(-4\right)x-2\times 3y=-2\times 2
-2x بىلەن -4x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -4 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -2 گە كۆپەيتىڭ.
8x-28y=-16,8x-6y=-4
ئاددىيلاشتۇرۇڭ.
8x-8x-28y+6y=-16+4
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 8x-28y=-16 دىن 8x-6y=-4 نى ئېلىڭ.
-28y+6y=-16+4
8x نى -8x گە قوشۇڭ. 8x بىلەن -8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-22y=-16+4
-28y نى 6y گە قوشۇڭ.
-22y=-12
-16 نى 4 گە قوشۇڭ.
y=\frac{6}{11}
ھەر ئىككى تەرەپنى -22 گە بۆلۈڭ.
-4x+3\times \frac{6}{11}=2
-4x+3y=2 دە \frac{6}{11} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-4x+\frac{18}{11}=2
3 نى \frac{6}{11} كە كۆپەيتىڭ.
-4x=\frac{4}{11}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{18}{11} نى ئېلىڭ.
x=-\frac{1}{11}
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
x=-\frac{1}{11},y=\frac{6}{11}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}