x، y نى يېشىش
x = \frac{15}{13} = 1\frac{2}{13} \approx 1.153846154
y=\frac{5}{13}\approx 0.384615385
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-2x+6y=0,-7x+8y=-5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-2x+6y=0
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-2x=-6y
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6y نى ئېلىڭ.
x=-\frac{1}{2}\left(-6\right)y
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x=3y
-\frac{1}{2} نى -6y كە كۆپەيتىڭ.
-7\times 3y+8y=-5
يەنە بىر تەڭلىمە -7x+8y=-5 دىكى x نىڭ ئورنىغا 3y نى ئالماشتۇرۇڭ.
-21y+8y=-5
-7 نى 3y كە كۆپەيتىڭ.
-13y=-5
-21y نى 8y گە قوشۇڭ.
y=\frac{5}{13}
ھەر ئىككى تەرەپنى -13 گە بۆلۈڭ.
x=3\times \frac{5}{13}
x=3y دە \frac{5}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{15}{13}
3 نى \frac{5}{13} كە كۆپەيتىڭ.
x=\frac{15}{13},y=\frac{5}{13}
سىستېما ھەل قىلىندى.
-2x+6y=0,-7x+8y=-5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-2&6\\-7&8\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{-2\times 8-6\left(-7\right)}&-\frac{6}{-2\times 8-6\left(-7\right)}\\-\frac{-7}{-2\times 8-6\left(-7\right)}&-\frac{2}{-2\times 8-6\left(-7\right)}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{13}&-\frac{3}{13}\\\frac{7}{26}&-\frac{1}{13}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{13}\left(-5\right)\\-\frac{1}{13}\left(-5\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{13}\\\frac{5}{13}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{15}{13},y=\frac{5}{13}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-2x+6y=0,-7x+8y=-5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-7\left(-2\right)x-7\times 6y=0,-2\left(-7\right)x-2\times 8y=-2\left(-5\right)
-2x بىلەن -7x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -7 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -2 گە كۆپەيتىڭ.
14x-42y=0,14x-16y=10
ئاددىيلاشتۇرۇڭ.
14x-14x-42y+16y=-10
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 14x-42y=0 دىن 14x-16y=10 نى ئېلىڭ.
-42y+16y=-10
14x نى -14x گە قوشۇڭ. 14x بىلەن -14x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-26y=-10
-42y نى 16y گە قوشۇڭ.
y=\frac{5}{13}
ھەر ئىككى تەرەپنى -26 گە بۆلۈڭ.
-7x+8\times \frac{5}{13}=-5
-7x+8y=-5 دە \frac{5}{13} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-7x+\frac{40}{13}=-5
8 نى \frac{5}{13} كە كۆپەيتىڭ.
-7x=-\frac{105}{13}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{40}{13} نى ئېلىڭ.
x=\frac{15}{13}
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
x=\frac{15}{13},y=\frac{5}{13}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}