y، x نى يېشىش
x=-1
y=0
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-10y+9x=-9,10y+5x=-5
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-10y+9x=-9
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-10y=-9x-9
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 9x نى ئېلىڭ.
y=-\frac{1}{10}\left(-9x-9\right)
ھەر ئىككى تەرەپنى -10 گە بۆلۈڭ.
y=\frac{9}{10}x+\frac{9}{10}
-\frac{1}{10} نى -9x-9 كە كۆپەيتىڭ.
10\left(\frac{9}{10}x+\frac{9}{10}\right)+5x=-5
يەنە بىر تەڭلىمە 10y+5x=-5 دىكى y نىڭ ئورنىغا \frac{9+9x}{10} نى ئالماشتۇرۇڭ.
9x+9+5x=-5
10 نى \frac{9+9x}{10} كە كۆپەيتىڭ.
14x+9=-5
9x نى 5x گە قوشۇڭ.
14x=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 9 نى ئېلىڭ.
x=-1
ھەر ئىككى تەرەپنى 14 گە بۆلۈڭ.
y=\frac{9}{10}\left(-1\right)+\frac{9}{10}
y=\frac{9}{10}x+\frac{9}{10} دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=\frac{-9+9}{10}
\frac{9}{10} نى -1 كە كۆپەيتىڭ.
y=0
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{9}{10} نى -\frac{9}{10} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
y=0,x=-1
سىستېما ھەل قىلىندى.
-10y+9x=-9,10y+5x=-5
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-10&9\\10&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-9\\-5\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-10&9\\10&5\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
\left(\begin{matrix}-10&9\\10&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}-10&9\\10&5\end{matrix}\right))\left(\begin{matrix}-9\\-5\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{5}{-10\times 5-9\times 10}&-\frac{9}{-10\times 5-9\times 10}\\-\frac{10}{-10\times 5-9\times 10}&-\frac{10}{-10\times 5-9\times 10}\end{matrix}\right)\left(\begin{matrix}-9\\-5\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{28}&\frac{9}{140}\\\frac{1}{14}&\frac{1}{14}\end{matrix}\right)\left(\begin{matrix}-9\\-5\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{28}\left(-9\right)+\frac{9}{140}\left(-5\right)\\\frac{1}{14}\left(-9\right)+\frac{1}{14}\left(-5\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\-1\end{matrix}\right)
ھېسابلاڭ.
y=0,x=-1
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
-10y+9x=-9,10y+5x=-5
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
10\left(-10\right)y+10\times 9x=10\left(-9\right),-10\times 10y-10\times 5x=-10\left(-5\right)
-10y بىلەن 10y نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 10 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -10 گە كۆپەيتىڭ.
-100y+90x=-90,-100y-50x=50
ئاددىيلاشتۇرۇڭ.
-100y+100y+90x+50x=-90-50
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -100y+90x=-90 دىن -100y-50x=50 نى ئېلىڭ.
90x+50x=-90-50
-100y نى 100y گە قوشۇڭ. -100y بىلەن 100y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
140x=-90-50
90x نى 50x گە قوشۇڭ.
140x=-140
-90 نى -50 گە قوشۇڭ.
x=-1
ھەر ئىككى تەرەپنى 140 گە بۆلۈڭ.
10y+5\left(-1\right)=-5
10y+5x=-5 دە -1 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
10y-5=-5
5 نى -1 كە كۆپەيتىڭ.
10y=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5 نى قوشۇڭ.
y=0
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
y=0,x=-1
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}