x، y نى يېشىش
x=4
y=25
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
-10x+20y=460,30x+60y=1620
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
-10x+20y=460
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
-10x=-20y+460
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 20y نى ئېلىڭ.
x=-\frac{1}{10}\left(-20y+460\right)
ھەر ئىككى تەرەپنى -10 گە بۆلۈڭ.
x=2y-46
-\frac{1}{10} نى -20y+460 كە كۆپەيتىڭ.
30\left(2y-46\right)+60y=1620
يەنە بىر تەڭلىمە 30x+60y=1620 دىكى x نىڭ ئورنىغا -46+2y نى ئالماشتۇرۇڭ.
60y-1380+60y=1620
30 نى -46+2y كە كۆپەيتىڭ.
120y-1380=1620
60y نى 60y گە قوشۇڭ.
120y=3000
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 1380 نى قوشۇڭ.
y=25
ھەر ئىككى تەرەپنى 120 گە بۆلۈڭ.
x=2\times 25-46
x=2y-46 دە 25 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=50-46
2 نى 25 كە كۆپەيتىڭ.
x=4
-46 نى 50 گە قوشۇڭ.
x=4,y=25
سىستېما ھەل قىلىندى.
-10x+20y=460,30x+60y=1620
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}460\\1620\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}-10&20\\30&60\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
\left(\begin{matrix}-10&20\\30&60\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-10&20\\30&60\end{matrix}\right))\left(\begin{matrix}460\\1620\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{60}{-10\times 60-20\times 30}&-\frac{20}{-10\times 60-20\times 30}\\-\frac{30}{-10\times 60-20\times 30}&-\frac{10}{-10\times 60-20\times 30}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}&\frac{1}{60}\\\frac{1}{40}&\frac{1}{120}\end{matrix}\right)\left(\begin{matrix}460\\1620\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{20}\times 460+\frac{1}{60}\times 1620\\\frac{1}{40}\times 460+\frac{1}{120}\times 1620\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\25\end{matrix}\right)
ھېسابلاڭ.
x=4,y=25
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
-10x+20y=460,30x+60y=1620
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
30\left(-10\right)x+30\times 20y=30\times 460,-10\times 30x-10\times 60y=-10\times 1620
-10x بىلەن 30x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 30 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى -10 گە كۆپەيتىڭ.
-300x+600y=13800,-300x-600y=-16200
ئاددىيلاشتۇرۇڭ.
-300x+300x+600y+600y=13800+16200
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -300x+600y=13800 دىن -300x-600y=-16200 نى ئېلىڭ.
600y+600y=13800+16200
-300x نى 300x گە قوشۇڭ. -300x بىلەن 300x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
1200y=13800+16200
600y نى 600y گە قوشۇڭ.
1200y=30000
13800 نى 16200 گە قوشۇڭ.
y=25
ھەر ئىككى تەرەپنى 1200 گە بۆلۈڭ.
30x+60\times 25=1620
30x+60y=1620 دە 25 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
30x+1500=1620
60 نى 25 كە كۆپەيتىڭ.
30x=120
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1500 نى ئېلىڭ.
x=4
ھەر ئىككى تەرەپنى 30 گە بۆلۈڭ.
x=4,y=25
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}