ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
\frac{1}{8}x-y=-\frac{5}{2}
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
\frac{1}{8}x=y-\frac{5}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
x=8\left(y-\frac{5}{2}\right)
ھەر ئىككى تەرەپنى 8 گە كۆپەيتىڭ.
x=8y-20
8 نى y-\frac{5}{2} كە كۆپەيتىڭ.
3\left(8y-20\right)+\frac{1}{3}y=13
يەنە بىر تەڭلىمە 3x+\frac{1}{3}y=13 دىكى x نىڭ ئورنىغا 8y-20 نى ئالماشتۇرۇڭ.
24y-60+\frac{1}{3}y=13
3 نى 8y-20 كە كۆپەيتىڭ.
\frac{73}{3}y-60=13
24y نى \frac{y}{3} گە قوشۇڭ.
\frac{73}{3}y=73
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 60 نى قوشۇڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{73}{3} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=8\times 3-20
x=8y-20 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=24-20
8 نى 3 كە كۆپەيتىڭ.
x=4
-20 نى 24 گە قوشۇڭ.
x=4,y=3
سىستېما ھەل قىلىندى.
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{8}&-1\\3&\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{1}{3}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&-\frac{-1}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\\-\frac{3}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}&\frac{\frac{1}{8}}{\frac{1}{8}\times \frac{1}{3}-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}&\frac{24}{73}\\-\frac{72}{73}&\frac{3}{73}\end{matrix}\right)\left(\begin{matrix}-\frac{5}{2}\\13\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{73}\left(-\frac{5}{2}\right)+\frac{24}{73}\times 13\\-\frac{72}{73}\left(-\frac{5}{2}\right)+\frac{3}{73}\times 13\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
ھېسابلاڭ.
x=4,y=3
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
\frac{1}{8}x-y=-\frac{5}{2},3x+\frac{1}{3}y=13
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
3\times \frac{1}{8}x+3\left(-1\right)y=3\left(-\frac{5}{2}\right),\frac{1}{8}\times 3x+\frac{1}{8}\times \frac{1}{3}y=\frac{1}{8}\times 13
\frac{x}{8} بىلەن 3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى \frac{1}{8} گە كۆپەيتىڭ.
\frac{3}{8}x-3y=-\frac{15}{2},\frac{3}{8}x+\frac{1}{24}y=\frac{13}{8}
ئاددىيلاشتۇرۇڭ.
\frac{3}{8}x-\frac{3}{8}x-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق \frac{3}{8}x-3y=-\frac{15}{2} دىن \frac{3}{8}x+\frac{1}{24}y=\frac{13}{8} نى ئېلىڭ.
-3y-\frac{1}{24}y=-\frac{15}{2}-\frac{13}{8}
\frac{3x}{8} نى -\frac{3x}{8} گە قوشۇڭ. \frac{3x}{8} بىلەن -\frac{3x}{8} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-\frac{73}{24}y=-\frac{15}{2}-\frac{13}{8}
-3y نى -\frac{y}{24} گە قوشۇڭ.
-\frac{73}{24}y=-\frac{73}{8}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{15}{2} نى -\frac{13}{8} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
y=3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{73}{24} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
3x+\frac{1}{3}\times 3=13
3x+\frac{1}{3}y=13 دە 3 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
3x+1=13
\frac{1}{3} نى 3 كە كۆپەيتىڭ.
3x=12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 1 نى ئېلىڭ.
x=4
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=4,y=3
سىستېما ھەل قىلىندى.