x، y نى يېشىش
x=12
y=15
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
5x+3y=105
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,5 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 15 گە كۆپەيتىڭ.
5x-6\times 2y=-120
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 6,5 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 30 گە كۆپەيتىڭ.
5x-12y=-120
-6 گە 2 نى كۆپەيتىپ -12 نى چىقىرىڭ.
5x+3y=105,5x-12y=-120
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
5x+3y=105
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
5x=-3y+105
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{5}\left(-3y+105\right)
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=-\frac{3}{5}y+21
\frac{1}{5} نى -3y+105 كە كۆپەيتىڭ.
5\left(-\frac{3}{5}y+21\right)-12y=-120
يەنە بىر تەڭلىمە 5x-12y=-120 دىكى x نىڭ ئورنىغا -\frac{3y}{5}+21 نى ئالماشتۇرۇڭ.
-3y+105-12y=-120
5 نى -\frac{3y}{5}+21 كە كۆپەيتىڭ.
-15y+105=-120
-3y نى -12y گە قوشۇڭ.
-15y=-225
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 105 نى ئېلىڭ.
y=15
ھەر ئىككى تەرەپنى -15 گە بۆلۈڭ.
x=-\frac{3}{5}\times 15+21
x=-\frac{3}{5}y+21 دە 15 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-9+21
-\frac{3}{5} نى 15 كە كۆپەيتىڭ.
x=12
21 نى -9 گە قوشۇڭ.
x=12,y=15
سىستېما ھەل قىلىندى.
5x+3y=105
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,5 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 15 گە كۆپەيتىڭ.
5x-6\times 2y=-120
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 6,5 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 30 گە كۆپەيتىڭ.
5x-12y=-120
-6 گە 2 نى كۆپەيتىپ -12 نى چىقىرىڭ.
5x+3y=105,5x-12y=-120
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}5&3\\5&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}105\\-120\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}5&3\\5&-12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
\left(\begin{matrix}5&3\\5&-12\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\5&-12\end{matrix}\right))\left(\begin{matrix}105\\-120\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{12}{5\left(-12\right)-3\times 5}&-\frac{3}{5\left(-12\right)-3\times 5}\\-\frac{5}{5\left(-12\right)-3\times 5}&\frac{5}{5\left(-12\right)-3\times 5}\end{matrix}\right)\left(\begin{matrix}105\\-120\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{1}{25}\\\frac{1}{15}&-\frac{1}{15}\end{matrix}\right)\left(\begin{matrix}105\\-120\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 105+\frac{1}{25}\left(-120\right)\\\frac{1}{15}\times 105-\frac{1}{15}\left(-120\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\15\end{matrix}\right)
ھېسابلاڭ.
x=12,y=15
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
5x+3y=105
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 3,5 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 15 گە كۆپەيتىڭ.
5x-6\times 2y=-120
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى 6,5 نىڭ ئەڭ كىچىك ئومۇمىي بۆلگۈچىسى 30 گە كۆپەيتىڭ.
5x-12y=-120
-6 گە 2 نى كۆپەيتىپ -12 نى چىقىرىڭ.
5x+3y=105,5x-12y=-120
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
5x-5x+3y+12y=105+120
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 5x+3y=105 دىن 5x-12y=-120 نى ئېلىڭ.
3y+12y=105+120
5x نى -5x گە قوشۇڭ. 5x بىلەن -5x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
15y=105+120
3y نى 12y گە قوشۇڭ.
15y=225
105 نى 120 گە قوشۇڭ.
y=15
ھەر ئىككى تەرەپنى 15 گە بۆلۈڭ.
5x-12\times 15=-120
5x-12y=-120 دە 15 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
5x-180=-120
-12 نى 15 كە كۆپەيتىڭ.
5x=60
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 180 نى قوشۇڭ.
x=12
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
x=12,y=15
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}