ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

\frac{1}{2}x-\frac{4}{5}y=-2,\frac{1}{6}x-\frac{1}{3}y=2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
\frac{1}{2}x-\frac{4}{5}y=-2
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
\frac{1}{2}x=\frac{4}{5}y-2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{4y}{5} نى قوشۇڭ.
x=2\left(\frac{4}{5}y-2\right)
ھەر ئىككى تەرەپنى 2 گە كۆپەيتىڭ.
x=\frac{8}{5}y-4
2 نى \frac{4y}{5}-2 كە كۆپەيتىڭ.
\frac{1}{6}\left(\frac{8}{5}y-4\right)-\frac{1}{3}y=2
يەنە بىر تەڭلىمە \frac{1}{6}x-\frac{1}{3}y=2 دىكى x نىڭ ئورنىغا \frac{8y}{5}-4 نى ئالماشتۇرۇڭ.
\frac{4}{15}y-\frac{2}{3}-\frac{1}{3}y=2
\frac{1}{6} نى \frac{8y}{5}-4 كە كۆپەيتىڭ.
-\frac{1}{15}y-\frac{2}{3}=2
\frac{4y}{15} نى -\frac{y}{3} گە قوشۇڭ.
-\frac{1}{15}y=\frac{8}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{2}{3} نى قوشۇڭ.
y=-40
ھەر ئىككى تەرەپنى -15 گە كۆپەيتىڭ.
x=\frac{8}{5}\left(-40\right)-4
x=\frac{8}{5}y-4 دە -40 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=-64-4
\frac{8}{5} نى -40 كە كۆپەيتىڭ.
x=-68
-4 نى -64 گە قوشۇڭ.
x=-68,y=-40
سىستېما ھەل قىلىندى.
\frac{1}{2}x-\frac{4}{5}y=-2,\frac{1}{6}x-\frac{1}{3}y=2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}\frac{1}{2}&-\frac{4}{5}\\\frac{1}{6}&-\frac{1}{3}\end{matrix}\right))\left(\begin{matrix}-2\\2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{1}{3}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}&-\frac{-\frac{4}{5}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}\\-\frac{\frac{1}{6}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}&\frac{\frac{1}{2}}{\frac{1}{2}\left(-\frac{1}{3}\right)-\left(-\frac{4}{5}\times \frac{1}{6}\right)}\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10&-24\\5&-15\end{matrix}\right)\left(\begin{matrix}-2\\2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\left(-2\right)-24\times 2\\5\left(-2\right)-15\times 2\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-68\\-40\end{matrix}\right)
ھېسابلاڭ.
x=-68,y=-40
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
\frac{1}{2}x-\frac{4}{5}y=-2,\frac{1}{6}x-\frac{1}{3}y=2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
\frac{1}{6}\times \frac{1}{2}x+\frac{1}{6}\left(-\frac{4}{5}\right)y=\frac{1}{6}\left(-2\right),\frac{1}{2}\times \frac{1}{6}x+\frac{1}{2}\left(-\frac{1}{3}\right)y=\frac{1}{2}\times 2
\frac{x}{2} بىلەن \frac{x}{6} نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى \frac{1}{6} گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى \frac{1}{2} گە كۆپەيتىڭ.
\frac{1}{12}x-\frac{2}{15}y=-\frac{1}{3},\frac{1}{12}x-\frac{1}{6}y=1
ئاددىيلاشتۇرۇڭ.
\frac{1}{12}x-\frac{1}{12}x-\frac{2}{15}y+\frac{1}{6}y=-\frac{1}{3}-1
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق \frac{1}{12}x-\frac{2}{15}y=-\frac{1}{3} دىن \frac{1}{12}x-\frac{1}{6}y=1 نى ئېلىڭ.
-\frac{2}{15}y+\frac{1}{6}y=-\frac{1}{3}-1
\frac{x}{12} نى -\frac{x}{12} گە قوشۇڭ. \frac{x}{12} بىلەن -\frac{x}{12} يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
\frac{1}{30}y=-\frac{1}{3}-1
-\frac{2y}{15} نى \frac{y}{6} گە قوشۇڭ.
\frac{1}{30}y=-\frac{4}{3}
-\frac{1}{3} نى -1 گە قوشۇڭ.
y=-40
ھەر ئىككى تەرەپنى 30 گە كۆپەيتىڭ.
\frac{1}{6}x-\frac{1}{3}\left(-40\right)=2
\frac{1}{6}x-\frac{1}{3}y=2 دە -40 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
\frac{1}{6}x+\frac{40}{3}=2
-\frac{1}{3} نى -40 كە كۆپەيتىڭ.
\frac{1}{6}x=-\frac{34}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{40}{3} نى ئېلىڭ.
x=-68
ھەر ئىككى تەرەپنى 6 گە كۆپەيتىڭ.
x=-68,y=-40
سىستېما ھەل قىلىندى.