\left. \begin{array} { l } { f {(x)} = 4 x + 5 }\\ { g = f {(5)} }\\ { h = g }\\ { i = h }\\ { j = i }\\ { k = j }\\ { l = k }\\ { m = l }\\ { n = m }\\ { o = n }\\ { \text{Solve for } p \text{ where} } \\ { p = o } \end{array} \right.
f، x، g، h، j، k، l، m، n، o، p نى يېشىش
p=i
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
h=i
تۆتىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
i=g
ئۈچىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ئۆزگەرگۈچى مىقدارنىڭ بىلىنگەن قىممەتلىرىنى تەڭلىمىگە كىرگۈزۈڭ.
g=i
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
i=f\times 5
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ئۆزگەرگۈچى مىقدارنىڭ بىلىنگەن قىممەتلىرىنى تەڭلىمىگە كىرگۈزۈڭ.
\frac{i}{5}=f
ھەر ئىككى تەرەپنى 5 گە بۆلۈڭ.
\frac{1}{5}i=f
i نى 5 گە بۆلۈپ \frac{1}{5}i نى چىقىرىڭ.
f=\frac{1}{5}i
بارلىق ئۆزگەرگۈچى ئەزالار تەڭلىكنىڭ سول تەرىپىدە تۇرىدىغان قىلىپ ئالماشتۇرۇڭ.
\frac{1}{5}ix=4x+5
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ئۆزگەرگۈچى مىقدارنىڭ بىلىنگەن قىممەتلىرىنى تەڭلىمىگە كىرگۈزۈڭ.
\frac{1}{5}ix-4x=5
ھەر ئىككى تەرەپتىن 4x نى ئېلىڭ.
\left(-4+\frac{1}{5}i\right)x=5
\frac{1}{5}ix بىلەن -4x نى بىرىكتۈرۈپ \left(-4+\frac{1}{5}i\right)x نى چىقىرىڭ.
x=\frac{5}{-4+\frac{1}{5}i}
ھەر ئىككى تەرەپنى -4+\frac{1}{5}i گە بۆلۈڭ.
x=\frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)}
\frac{5}{-4+\frac{1}{5}i} نىڭ سۈرەت ۋە مەخرەجلىرىنى مەخرەجنىڭ مۇرەككەپ قوشمىسى -4-\frac{1}{5}i گە كۆپەيتىڭ.
x=\frac{-20-i}{\frac{401}{25}}
\frac{5\left(-4-\frac{1}{5}i\right)}{\left(-4+\frac{1}{5}i\right)\left(-4-\frac{1}{5}i\right)} دە كۆپەيتىش مەشغۇلاتى قىلىڭ.
x=-\frac{500}{401}-\frac{25}{401}i
-20-i نى \frac{401}{25} گە بۆلۈپ -\frac{500}{401}-\frac{25}{401}i نى چىقىرىڭ.
f=\frac{1}{5}i x=-\frac{500}{401}-\frac{25}{401}i g=i h=i j=i k=i l=i m=i n=i o=i p=i
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}