x، y، z نى يېشىش (complex solution)
\left\{\begin{matrix}x=\frac{i\sqrt{a}\sqrt{a-2m}}{m}-2\text{, }y=\frac{a}{m}\text{, }z=a\text{; }x=-\frac{i\sqrt{a}\sqrt{a-2m}}{m}-2\text{, }y=\frac{a}{m}\text{, }z=a\text{, }&m\neq 0\\x=i\sqrt{y}\sqrt{y-2}-2\text{, }y\in \mathrm{C}\text{, }z=0\text{; }x=-i\sqrt{y}\sqrt{y-2}-2\text{, }y\in \mathrm{C}\text{, }z=0\text{, }&a=0\text{ and }m=0\end{matrix}\right.
x، y، z نى يېشىش
\left\{\begin{matrix}x=-\frac{\sqrt{a\left(2m-a\right)}+2|m|}{|m|}\text{, }y=\frac{a}{m}\text{, }z=a\text{; }x=\frac{\sqrt{a\left(2m-a\right)}-2|m|}{|m|}\text{, }y=\frac{a}{m}\text{, }z=a\text{, }&\left(a<0\text{ or }m\geq \frac{a}{2}\right)\text{ and }a\neq 0\text{ and }\left(a>0\text{ or }m\leq \frac{a}{2}\right)\\x=-\left(\sqrt{y\left(2-y\right)}+2\right)\text{, }y\in \begin{bmatrix}0,2\end{bmatrix}\text{, }z=0\text{; }x=\sqrt{y\left(2-y\right)}-2\text{, }y\in \begin{bmatrix}0,2\end{bmatrix}\text{, }z=0\text{, }&a=0\text{ and }m=0\end{matrix}\right.
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}