x، y، z، a، b نى يېشىش
x=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
y=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
z\in \cup n_{1},\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
a\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\pi n_{1}+\frac{\pi }{4}
z=\pi n_{1}+\frac{\pi }{4}
n_{1}\in \mathrm{Z}
b\in \cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\cup n_{1},\pi n_{1}+\frac{\pi }{4}
a=\pi n_{1}+\frac{\pi }{4}\text{ and }z=\pi n_{1}+\frac{\pi }{4}
\exists n_{1}\in \mathrm{Z}\text{ : }\left(\exists n_{1}\in \mathrm{Z}\text{ : }z=\pi n_{1}+\frac{\pi }{4}\right)
n_{1}\in \mathrm{Z}
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}