ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x+y=64,12x-26y=19
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x+y=64
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=-y+64
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
12\left(-y+64\right)-26y=19
يەنە بىر تەڭلىمە 12x-26y=19 دىكى x نىڭ ئورنىغا -y+64 نى ئالماشتۇرۇڭ.
-12y+768-26y=19
12 نى -y+64 كە كۆپەيتىڭ.
-38y+768=19
-12y نى -26y گە قوشۇڭ.
-38y=-749
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 768 نى ئېلىڭ.
y=\frac{749}{38}
ھەر ئىككى تەرەپنى -38 گە بۆلۈڭ.
x=-\frac{749}{38}+64
x=-y+64 دە \frac{749}{38} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{1683}{38}
64 نى -\frac{749}{38} گە قوشۇڭ.
x=\frac{1683}{38},y=\frac{749}{38}
سىستېما ھەل قىلىندى.
x+y=64,12x-26y=19
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\19\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}1&1\\12&-26\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
\left(\begin{matrix}1&1\\12&-26\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\12&-26\end{matrix}\right))\left(\begin{matrix}64\\19\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{26}{-26-12}&-\frac{1}{-26-12}\\-\frac{12}{-26-12}&\frac{1}{-26-12}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}&\frac{1}{38}\\\frac{6}{19}&-\frac{1}{38}\end{matrix}\right)\left(\begin{matrix}64\\19\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{19}\times 64+\frac{1}{38}\times 19\\\frac{6}{19}\times 64-\frac{1}{38}\times 19\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1683}{38}\\\frac{749}{38}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{1683}{38},y=\frac{749}{38}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x+y=64,12x-26y=19
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
12x+12y=12\times 64,12x-26y=19
x بىلەن 12x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 12 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
12x+12y=768,12x-26y=19
ئاددىيلاشتۇرۇڭ.
12x-12x+12y+26y=768-19
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 12x+12y=768 دىن 12x-26y=19 نى ئېلىڭ.
12y+26y=768-19
12x نى -12x گە قوشۇڭ. 12x بىلەن -12x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
38y=768-19
12y نى 26y گە قوشۇڭ.
38y=749
768 نى -19 گە قوشۇڭ.
y=\frac{749}{38}
ھەر ئىككى تەرەپنى 38 گە بۆلۈڭ.
12x-26\times \frac{749}{38}=19
12x-26y=19 دە \frac{749}{38} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
12x-\frac{9737}{19}=19
-26 نى \frac{749}{38} كە كۆپەيتىڭ.
12x=\frac{10098}{19}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{9737}{19} نى قوشۇڭ.
x=\frac{1683}{38}
ھەر ئىككى تەرەپنى 12 گە بۆلۈڭ.
x=\frac{1683}{38},y=\frac{749}{38}
سىستېما ھەل قىلىندى.