x، y نى يېشىش
x = \frac{11}{6} = 1\frac{5}{6} \approx 1.833333333
y=-\frac{2}{3}\approx -0.666666667
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2x+y=3,-2x-4y=-1
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
2x+y=3
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
2x=-y+3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن y نى ئېلىڭ.
x=\frac{1}{2}\left(-y+3\right)
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=-\frac{1}{2}y+\frac{3}{2}
\frac{1}{2} نى -y+3 كە كۆپەيتىڭ.
-2\left(-\frac{1}{2}y+\frac{3}{2}\right)-4y=-1
يەنە بىر تەڭلىمە -2x-4y=-1 دىكى x نىڭ ئورنىغا \frac{-y+3}{2} نى ئالماشتۇرۇڭ.
y-3-4y=-1
-2 نى \frac{-y+3}{2} كە كۆپەيتىڭ.
-3y-3=-1
y نى -4y گە قوشۇڭ.
-3y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
y=-\frac{2}{3}
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
x=-\frac{1}{2}\left(-\frac{2}{3}\right)+\frac{3}{2}
x=-\frac{1}{2}y+\frac{3}{2} دە -\frac{2}{3} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{1}{3}+\frac{3}{2}
سۈرەتنى سۈرەتكە، مەخرەجنى مەخرەجگە كۆپەيتىش ئارقىلىق -\frac{1}{2} نى -\frac{2}{3} گە كۆپەيتىڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە ئاددىيلاشتۇرۇڭ.
x=\frac{11}{6}
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{3}{2} نى \frac{1}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=\frac{11}{6},y=-\frac{2}{3}
سىستېما ھەل قىلىندى.
2x+y=3,-2x-4y=-1
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\-2&-4\end{matrix}\right))\left(\begin{matrix}3\\-1\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{2\left(-4\right)-\left(-2\right)}&-\frac{1}{2\left(-4\right)-\left(-2\right)}\\-\frac{-2}{2\left(-4\right)-\left(-2\right)}&\frac{2}{2\left(-4\right)-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&\frac{1}{6}\\-\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}3\\-1\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 3+\frac{1}{6}\left(-1\right)\\-\frac{1}{3}\times 3-\frac{1}{3}\left(-1\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{11}{6}\\-\frac{2}{3}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{11}{6},y=-\frac{2}{3}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
2x+y=3,-2x-4y=-1
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-2\times 2x-2y=-2\times 3,2\left(-2\right)x+2\left(-4\right)y=2\left(-1\right)
2x بىلەن -2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 2 گە كۆپەيتىڭ.
-4x-2y=-6,-4x-8y=-2
ئاددىيلاشتۇرۇڭ.
-4x+4x-2y+8y=-6+2
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -4x-2y=-6 دىن -4x-8y=-2 نى ئېلىڭ.
-2y+8y=-6+2
-4x نى 4x گە قوشۇڭ. -4x بىلەن 4x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
6y=-6+2
-2y نى 8y گە قوشۇڭ.
6y=-4
-6 نى 2 گە قوشۇڭ.
y=-\frac{2}{3}
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
-2x-4\left(-\frac{2}{3}\right)=-1
-2x-4y=-1 دە -\frac{2}{3} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-2x+\frac{8}{3}=-1
-4 نى -\frac{2}{3} كە كۆپەيتىڭ.
-2x=-\frac{11}{3}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{8}{3} نى ئېلىڭ.
x=\frac{11}{6}
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x=\frac{11}{6},y=-\frac{2}{3}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}