\left\{ \begin{array}{l}{ x + y - 4 z = 0 }\\{ 4 x + 7 z = 41 }\\{ 4 x + 3 y = 41 }\end{array} \right.
x، y، z نى يېشىش
x=5
y=7
z=3
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
x=-y+4z
x+y-4z=0 دىكى x نى تېپىڭ.
4\left(-y+4z\right)+7z=41 4\left(-y+4z\right)+3y=41
ئىككىنچى ۋە ئۈچىنچى تەڭلىمىدىكى -y+4z نى x گە ئالماشتۇرۇڭ.
y=-\frac{41}{4}+\frac{23}{4}z z=\frac{41}{16}+\frac{1}{16}y
بۇ تەڭلىمىدىكى y ۋە z نى ئايرىم-ئايرىم يېشىڭ.
z=\frac{41}{16}+\frac{1}{16}\left(-\frac{41}{4}+\frac{23}{4}z\right)
تەڭلىمە z=\frac{41}{16}+\frac{1}{16}y دىكى -\frac{41}{4}+\frac{23}{4}z نى y گە ئالماشتۇرۇڭ.
z=3
z=\frac{41}{16}+\frac{1}{16}\left(-\frac{41}{4}+\frac{23}{4}z\right) دىكى z نى تېپىڭ.
y=-\frac{41}{4}+\frac{23}{4}\times 3
تەڭلىمە y=-\frac{41}{4}+\frac{23}{4}z دىكى 3 نى z گە ئالماشتۇرۇڭ.
y=7
y=-\frac{41}{4}+\frac{23}{4}\times 3 دىكى y نى ھېسابلاڭ.
x=-7+4\times 3
تەڭلىمە x=-y+4z دىكى 7 نى y گە ۋە 3 نى z گە ئالماشتۇرۇڭ.
x=5
x=-7+4\times 3 دىكى x نى ھېسابلاڭ.
x=5 y=7 z=3
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}