\left\{ \begin{array}{l}{ 5 x + 3 y = c }\\{ ( 3 k + 20 ) x = 4 c + 3 }\end{array} \right.
x، y نى يېشىش (complex solution)
\left\{\begin{matrix}x=\frac{4c+3}{3k+20}\text{, }y=-\frac{5-ck}{3k+20}\text{, }&k\neq -\frac{20}{3}\\x=\frac{3\left(-4y-1\right)}{20}\text{, }y\in \mathrm{C}\text{, }&c=-\frac{3}{4}\text{ and }k=-\frac{20}{3}\end{matrix}\right.
x، y نى يېشىش
\left\{\begin{matrix}x=\frac{4c+3}{3k+20}\text{, }y=-\frac{5-ck}{3k+20}\text{, }&k\neq -\frac{20}{3}\\x=\frac{3\left(-4y-1\right)}{20}\text{, }y\in \mathrm{R}\text{, }&c=-\frac{3}{4}\text{ and }k=-\frac{20}{3}\end{matrix}\right.
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
\left(3k+20\right)x=4c+3,5x+3y=c
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
\left(3k+20\right)x=4c+3
ئىككى تەڭلىمىدىن يېشىش ئاسان بولغىنىنى تاللاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇپ، x نىڭ قىممىتىنى تېپىپ يېشىڭ.
x=\frac{4c+3}{3k+20}
ھەر ئىككى تەرەپنى 3k+20 گە بۆلۈڭ.
5\times \frac{4c+3}{3k+20}+3y=c
يەنە بىر تەڭلىمە 5x+3y=c دىكى x نىڭ ئورنىغا \frac{4c+3}{3k+20} نى ئالماشتۇرۇڭ.
\frac{5\left(4c+3\right)}{3k+20}+3y=c
5 نى \frac{4c+3}{3k+20} كە كۆپەيتىڭ.
3y=\frac{3\left(ck-5\right)}{3k+20}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5\left(4c+3\right)}{3k+20} نى ئېلىڭ.
y=\frac{ck-5}{3k+20}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{4c+3}{3k+20},y=\frac{ck-5}{3k+20}
سىستېما ھەل قىلىندى.
\left(3k+20\right)x=4c+3,5x+3y=c
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
\left(3k+20\right)x=4c+3
ئىككى تەڭلىمىدىن يېشىش ئاسان بولغىنىنى تاللاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇپ، x نىڭ قىممىتىنى تېپىپ يېشىڭ.
x=\frac{4c+3}{3k+20}
ھەر ئىككى تەرەپنى 3k+20 گە بۆلۈڭ.
5\times \frac{4c+3}{3k+20}+3y=c
يەنە بىر تەڭلىمە 5x+3y=c دىكى x نىڭ ئورنىغا \frac{4c+3}{3k+20} نى ئالماشتۇرۇڭ.
\frac{5\left(4c+3\right)}{3k+20}+3y=c
5 نى \frac{4c+3}{3k+20} كە كۆپەيتىڭ.
3y=\frac{3\left(ck-5\right)}{3k+20}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{5\left(4c+3\right)}{3k+20} نى ئېلىڭ.
y=\frac{ck-5}{3k+20}
ھەر ئىككى تەرەپنى 3 گە بۆلۈڭ.
x=\frac{4c+3}{3k+20},y=\frac{ck-5}{3k+20}
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}