\left\{ \begin{array}{l}{ 4 x + 7 y + 8 z = 143 }\\{ 6 x + y + z = 52 }\\{ 3 x + 5 y + 4 z = 91 }\end{array} \right.
x، y، z نى يېشىش
x=6
y=9
z=7
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
6x+y+z=52 4x+7y+8z=143 3x+5y+4z=91
تەڭلىمىنى قايتا رەتلەڭ.
y=-6x-z+52
6x+y+z=52 دىكى y نى تېپىڭ.
4x+7\left(-6x-z+52\right)+8z=143 3x+5\left(-6x-z+52\right)+4z=91
ئىككىنچى ۋە ئۈچىنچى تەڭلىمىدىكى -6x-z+52 نى y گە ئالماشتۇرۇڭ.
x=\frac{221}{38}+\frac{1}{38}z z=-27x+169
بۇ تەڭلىمىدىكى x ۋە z نى ئايرىم-ئايرىم يېشىڭ.
z=-27\left(\frac{221}{38}+\frac{1}{38}z\right)+169
تەڭلىمە z=-27x+169 دىكى \frac{221}{38}+\frac{1}{38}z نى x گە ئالماشتۇرۇڭ.
z=7
z=-27\left(\frac{221}{38}+\frac{1}{38}z\right)+169 دىكى z نى تېپىڭ.
x=\frac{221}{38}+\frac{1}{38}\times 7
تەڭلىمە x=\frac{221}{38}+\frac{1}{38}z دىكى 7 نى z گە ئالماشتۇرۇڭ.
x=6
x=\frac{221}{38}+\frac{1}{38}\times 7 دىكى x نى ھېسابلاڭ.
y=-6\times 6-7+52
تەڭلىمە y=-6x-z+52 دىكى 6 نى x گە ۋە 7 نى z گە ئالماشتۇرۇڭ.
y=9
y=-6\times 6-7+52 دىكى y نى ھېسابلاڭ.
x=6 y=9 z=7
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}