\left\{ \begin{array} { r } { u - 30 v = - 65 } \\ { - 3 u + 80 v = 165 } \end{array} \right.
u، v نى يېشىش
u=25
v=3
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
u-30v=-65,-3u+80v=165
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
u-30v=-65
تەڭلىمىدىن بىرنى تالاپ، u نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق u نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
u=30v-65
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 30v نى قوشۇڭ.
-3\left(30v-65\right)+80v=165
يەنە بىر تەڭلىمە -3u+80v=165 دىكى u نىڭ ئورنىغا 30v-65 نى ئالماشتۇرۇڭ.
-90v+195+80v=165
-3 نى 30v-65 كە كۆپەيتىڭ.
-10v+195=165
-90v نى 80v گە قوشۇڭ.
-10v=-30
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 195 نى ئېلىڭ.
v=3
ھەر ئىككى تەرەپنى -10 گە بۆلۈڭ.
u=30\times 3-65
u=30v-65 دە 3 نى v گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، u نى بىۋاسىتە يېشەلەيسىز.
u=90-65
30 نى 3 كە كۆپەيتىڭ.
u=25
-65 نى 90 گە قوشۇڭ.
u=25,v=3
سىستېما ھەل قىلىندى.
u-30v=-65,-3u+80v=165
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-65\\165\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}u\\v\end{matrix}\right)=inverse(\left(\begin{matrix}1&-30\\-3&80\end{matrix}\right))\left(\begin{matrix}-65\\165\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}\frac{80}{80-\left(-30\left(-3\right)\right)}&-\frac{-30}{80-\left(-30\left(-3\right)\right)}\\-\frac{-3}{80-\left(-30\left(-3\right)\right)}&\frac{1}{80-\left(-30\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}-65\\165\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-8&-3\\-\frac{3}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}-65\\165\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}-8\left(-65\right)-3\times 165\\-\frac{3}{10}\left(-65\right)-\frac{1}{10}\times 165\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}u\\v\end{matrix}\right)=\left(\begin{matrix}25\\3\end{matrix}\right)
ھېسابلاڭ.
u=25,v=3
ماترىتسا ئېلېمېنتلىرى u ۋە v نى يېيىڭ.
u-30v=-65,-3u+80v=165
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3u-3\left(-30\right)v=-3\left(-65\right),-3u+80v=165
u بىلەن -3u نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
-3u+90v=195,-3u+80v=165
ئاددىيلاشتۇرۇڭ.
-3u+3u+90v-80v=195-165
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -3u+90v=195 دىن -3u+80v=165 نى ئېلىڭ.
90v-80v=195-165
-3u نى 3u گە قوشۇڭ. -3u بىلەن 3u يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
10v=195-165
90v نى -80v گە قوشۇڭ.
10v=30
195 نى -165 گە قوشۇڭ.
v=3
ھەر ئىككى تەرەپنى 10 گە بۆلۈڭ.
-3u+80\times 3=165
-3u+80v=165 دە 3 نى v گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، u نى بىۋاسىتە يېشەلەيسىز.
-3u+240=165
80 نى 3 كە كۆپەيتىڭ.
-3u=-75
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 240 نى ئېلىڭ.
u=25
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
u=25,v=3
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}