ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

7x+3y=-15,-5x+12y=39
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
7x+3y=-15
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
7x=-3y-15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 3y نى ئېلىڭ.
x=\frac{1}{7}\left(-3y-15\right)
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=-\frac{3}{7}y-\frac{15}{7}
\frac{1}{7} نى -3y-15 كە كۆپەيتىڭ.
-5\left(-\frac{3}{7}y-\frac{15}{7}\right)+12y=39
يەنە بىر تەڭلىمە -5x+12y=39 دىكى x نىڭ ئورنىغا \frac{-3y-15}{7} نى ئالماشتۇرۇڭ.
\frac{15}{7}y+\frac{75}{7}+12y=39
-5 نى \frac{-3y-15}{7} كە كۆپەيتىڭ.
\frac{99}{7}y+\frac{75}{7}=39
\frac{15y}{7} نى 12y گە قوشۇڭ.
\frac{99}{7}y=\frac{198}{7}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{75}{7} نى ئېلىڭ.
y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{99}{7} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=-\frac{3}{7}\times 2-\frac{15}{7}
x=-\frac{3}{7}y-\frac{15}{7} دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{-6-15}{7}
-\frac{3}{7} نى 2 كە كۆپەيتىڭ.
x=-3
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق -\frac{15}{7} نى -\frac{6}{7} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=-3,y=2
سىستېما ھەل قىلىندى.
7x+3y=-15,-5x+12y=39
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-15\\39\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}7&3\\-5&12\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
\left(\begin{matrix}7&3\\-5&12\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}7&3\\-5&12\end{matrix}\right))\left(\begin{matrix}-15\\39\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{7\times 12-3\left(-5\right)}&-\frac{3}{7\times 12-3\left(-5\right)}\\-\frac{-5}{7\times 12-3\left(-5\right)}&\frac{7}{7\times 12-3\left(-5\right)}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}&-\frac{1}{33}\\\frac{5}{99}&\frac{7}{99}\end{matrix}\right)\left(\begin{matrix}-15\\39\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{33}\left(-15\right)-\frac{1}{33}\times 39\\\frac{5}{99}\left(-15\right)+\frac{7}{99}\times 39\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\2\end{matrix}\right)
ھېسابلاڭ.
x=-3,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
7x+3y=-15,-5x+12y=39
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-5\times 7x-5\times 3y=-5\left(-15\right),7\left(-5\right)x+7\times 12y=7\times 39
7x بىلەن -5x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -5 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 7 گە كۆپەيتىڭ.
-35x-15y=75,-35x+84y=273
ئاددىيلاشتۇرۇڭ.
-35x+35x-15y-84y=75-273
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -35x-15y=75 دىن -35x+84y=273 نى ئېلىڭ.
-15y-84y=75-273
-35x نى 35x گە قوشۇڭ. -35x بىلەن 35x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-99y=75-273
-15y نى -84y گە قوشۇڭ.
-99y=-198
75 نى -273 گە قوشۇڭ.
y=2
ھەر ئىككى تەرەپنى -99 گە بۆلۈڭ.
-5x+12\times 2=39
-5x+12y=39 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-5x+24=39
12 نى 2 كە كۆپەيتىڭ.
-5x=15
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 24 نى ئېلىڭ.
x=-3
ھەر ئىككى تەرەپنى -5 گە بۆلۈڭ.
x=-3,y=2
سىستېما ھەل قىلىندى.