ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

6x-5y=14,-3x+5y=-2
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
6x-5y=14
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
6x=5y+14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 5y نى قوشۇڭ.
x=\frac{1}{6}\left(5y+14\right)
ھەر ئىككى تەرەپنى 6 گە بۆلۈڭ.
x=\frac{5}{6}y+\frac{7}{3}
\frac{1}{6} نى 5y+14 كە كۆپەيتىڭ.
-3\left(\frac{5}{6}y+\frac{7}{3}\right)+5y=-2
يەنە بىر تەڭلىمە -3x+5y=-2 دىكى x نىڭ ئورنىغا \frac{5y}{6}+\frac{7}{3} نى ئالماشتۇرۇڭ.
-\frac{5}{2}y-7+5y=-2
-3 نى \frac{5y}{6}+\frac{7}{3} كە كۆپەيتىڭ.
\frac{5}{2}y-7=-2
-\frac{5y}{2} نى 5y گە قوشۇڭ.
\frac{5}{2}y=5
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 7 نى قوشۇڭ.
y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{5}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
x=\frac{5}{6}\times 2+\frac{7}{3}
x=\frac{5}{6}y+\frac{7}{3} دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{5+7}{3}
\frac{5}{6} نى 2 كە كۆپەيتىڭ.
x=4
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{7}{3} نى \frac{5}{3} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=4,y=2
سىستېما ھەل قىلىندى.
6x-5y=14,-3x+5y=-2
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}14\\-2\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}6&-5\\-3&5\end{matrix}\right))\left(\begin{matrix}14\\-2\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{6\times 5-\left(-5\left(-3\right)\right)}&-\frac{-5}{6\times 5-\left(-5\left(-3\right)\right)}\\-\frac{-3}{6\times 5-\left(-5\left(-3\right)\right)}&\frac{6}{6\times 5-\left(-5\left(-3\right)\right)}\end{matrix}\right)\left(\begin{matrix}14\\-2\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}14\\-2\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 14+\frac{1}{3}\left(-2\right)\\\frac{1}{5}\times 14+\frac{2}{5}\left(-2\right)\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
ھېسابلاڭ.
x=4,y=2
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
6x-5y=14,-3x+5y=-2
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-3\times 6x-3\left(-5\right)y=-3\times 14,6\left(-3\right)x+6\times 5y=6\left(-2\right)
6x بىلەن -3x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -3 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 6 گە كۆپەيتىڭ.
-18x+15y=-42,-18x+30y=-12
ئاددىيلاشتۇرۇڭ.
-18x+18x+15y-30y=-42+12
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -18x+15y=-42 دىن -18x+30y=-12 نى ئېلىڭ.
15y-30y=-42+12
-18x نى 18x گە قوشۇڭ. -18x بىلەن 18x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-15y=-42+12
15y نى -30y گە قوشۇڭ.
-15y=-30
-42 نى 12 گە قوشۇڭ.
y=2
ھەر ئىككى تەرەپنى -15 گە بۆلۈڭ.
-3x+5\times 2=-2
-3x+5y=-2 دە 2 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-3x+10=-2
5 نى 2 كە كۆپەيتىڭ.
-3x=-12
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 10 نى ئېلىڭ.
x=4
ھەر ئىككى تەرەپنى -3 گە بۆلۈڭ.
x=4,y=2
سىستېما ھەل قىلىندى.