ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

4x-2y=6,-2x+2y=8
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
4x-2y=6
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
4x=2y+6
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2y نى قوشۇڭ.
x=\frac{1}{4}\left(2y+6\right)
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{1}{2}y+\frac{3}{2}
\frac{1}{4} نى 6+2y كە كۆپەيتىڭ.
-2\left(\frac{1}{2}y+\frac{3}{2}\right)+2y=8
يەنە بىر تەڭلىمە -2x+2y=8 دىكى x نىڭ ئورنىغا \frac{3+y}{2} نى ئالماشتۇرۇڭ.
-y-3+2y=8
-2 نى \frac{3+y}{2} كە كۆپەيتىڭ.
y-3=8
-y نى 2y گە قوشۇڭ.
y=11
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 3 نى قوشۇڭ.
x=\frac{1}{2}\times 11+\frac{3}{2}
x=\frac{1}{2}y+\frac{3}{2} دە 11 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{11+3}{2}
\frac{1}{2} نى 11 كە كۆپەيتىڭ.
x=7
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{3}{2} نى \frac{11}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
x=7,y=11
سىستېما ھەل قىلىندى.
4x-2y=6,-2x+2y=8
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\8\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\-2&2\end{matrix}\right))\left(\begin{matrix}6\\8\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-2\left(-2\right)\right)}&-\frac{-2}{4\times 2-\left(-2\left(-2\right)\right)}\\-\frac{-2}{4\times 2-\left(-2\left(-2\right)\right)}&\frac{4}{4\times 2-\left(-2\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\\frac{1}{2}&1\end{matrix}\right)\left(\begin{matrix}6\\8\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 6+\frac{1}{2}\times 8\\\frac{1}{2}\times 6+8\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\11\end{matrix}\right)
ھېسابلاڭ.
x=7,y=11
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
4x-2y=6,-2x+2y=8
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
-2\times 4x-2\left(-2\right)y=-2\times 6,4\left(-2\right)x+4\times 2y=4\times 8
4x بىلەن -2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى -2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 4 گە كۆپەيتىڭ.
-8x+4y=-12,-8x+8y=32
ئاددىيلاشتۇرۇڭ.
-8x+8x+4y-8y=-12-32
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق -8x+4y=-12 دىن -8x+8y=32 نى ئېلىڭ.
4y-8y=-12-32
-8x نى 8x گە قوشۇڭ. -8x بىلەن 8x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4y=-12-32
4y نى -8y گە قوشۇڭ.
-4y=-44
-12 نى -32 گە قوشۇڭ.
y=11
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
-2x+2\times 11=8
-2x+2y=8 دە 11 نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
-2x+22=8
2 نى 11 كە كۆپەيتىڭ.
-2x=-14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 22 نى ئېلىڭ.
x=7
ھەر ئىككى تەرەپنى -2 گە بۆلۈڭ.
x=7,y=11
سىستېما ھەل قىلىندى.