\left\{ \begin{array} { l } { y = 2 x - 3 } \\ { 3 x + 2 y = 8 } \end{array} \right.
y، x نى يېشىش
x=2
y=1
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
y-2x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-2x=-3,2y+3x=8
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-2x=-3
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=2x-3
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 2x نى قوشۇڭ.
2\left(2x-3\right)+3x=8
يەنە بىر تەڭلىمە 2y+3x=8 دىكى y نىڭ ئورنىغا 2x-3 نى ئالماشتۇرۇڭ.
4x-6+3x=8
2 نى 2x-3 كە كۆپەيتىڭ.
7x-6=8
4x نى 3x گە قوشۇڭ.
7x=14
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە 6 نى قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
y=2\times 2-3
y=2x-3 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=4-3
2 نى 2 كە كۆپەيتىڭ.
y=1
-3 نى 4 گە قوشۇڭ.
y=1,x=2
سىستېما ھەل قىلىندى.
y-2x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-2x=-3,2y+3x=8
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-3\\8\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}1&-2\\2&3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-3\\8\end{matrix}\right)
\left(\begin{matrix}1&-2\\2&3\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-3\\8\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\2&3\end{matrix}\right))\left(\begin{matrix}-3\\8\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\times 2\right)}&-\frac{-2}{3-\left(-2\times 2\right)}\\-\frac{2}{3-\left(-2\times 2\right)}&\frac{1}{3-\left(-2\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-3\\8\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}&\frac{2}{7}\\-\frac{2}{7}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}-3\\8\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{7}\left(-3\right)+\frac{2}{7}\times 8\\-\frac{2}{7}\left(-3\right)+\frac{1}{7}\times 8\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ھېسابلاڭ.
y=1,x=2
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-2x=-3
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن 2x نى ئېلىڭ.
y-2x=-3,2y+3x=8
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2y+2\left(-2\right)x=2\left(-3\right),2y+3x=8
y بىلەن 2y نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
2y-4x=-6,2y+3x=8
ئاددىيلاشتۇرۇڭ.
2y-2y-4x-3x=-6-8
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2y-4x=-6 دىن 2y+3x=8 نى ئېلىڭ.
-4x-3x=-6-8
2y نى -2y گە قوشۇڭ. 2y بىلەن -2y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-7x=-6-8
-4x نى -3x گە قوشۇڭ.
-7x=-14
-6 نى -8 گە قوشۇڭ.
x=2
ھەر ئىككى تەرەپنى -7 گە بۆلۈڭ.
2y+3\times 2=8
2y+3x=8 دە 2 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
2y+6=8
3 نى 2 كە كۆپەيتىڭ.
2y=2
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن 6 نى ئېلىڭ.
y=1
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=1,x=2
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}