ئاساسىي مەزمۇنغا ئاتلاش
y، x نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

y-\frac{1}{2}x=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن \frac{1}{2}x نى ئېلىڭ.
y+2x=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-\frac{1}{2}x=0,y+2x=0
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
y-\frac{1}{2}x=0
تەڭلىمىدىن بىرنى تالاپ، y نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق y نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
y=\frac{1}{2}x
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{x}{2} نى قوشۇڭ.
\frac{1}{2}x+2x=0
يەنە بىر تەڭلىمە y+2x=0 دىكى y نىڭ ئورنىغا \frac{x}{2} نى ئالماشتۇرۇڭ.
\frac{5}{2}x=0
\frac{x}{2} نى 2x گە قوشۇڭ.
x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى \frac{5}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
y=0
y=\frac{1}{2}x دە 0 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=0,x=0
سىستېما ھەل قىلىندى.
y-\frac{1}{2}x=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن \frac{1}{2}x نى ئېلىڭ.
y+2x=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-\frac{1}{2}x=0,y+2x=0
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right))\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-\frac{1}{2}\\1&2\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-\frac{1}{2}\right)}&-\frac{-\frac{1}{2}}{2-\left(-\frac{1}{2}\right)}\\-\frac{1}{2-\left(-\frac{1}{2}\right)}&\frac{1}{2-\left(-\frac{1}{2}\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
y=0,x=0
ماترىتسا ئېلېمېنتلىرى y ۋە x نى يېيىڭ.
y-\frac{1}{2}x=0
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ھەر ئىككى تەرەپتىن \frac{1}{2}x نى ئېلىڭ.
y+2x=0
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 2x نى ھەر ئىككى تەرەپكە قوشۇڭ.
y-\frac{1}{2}x=0,y+2x=0
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
y-y-\frac{1}{2}x-2x=0
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق y-\frac{1}{2}x=0 دىن y+2x=0 نى ئېلىڭ.
-\frac{1}{2}x-2x=0
y نى -y گە قوشۇڭ. y بىلەن -y يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-\frac{5}{2}x=0
-\frac{x}{2} نى -2x گە قوشۇڭ.
x=0
تەڭلىمىنىڭ ھەر ئىككى تەرىپىنى -\frac{5}{2} گە، يەنى كەسىرنىڭ ئەكس سانى ئارقىلىق ھەر ئىككى تەرەپنى كۆپەيتىدىغان سانغا بۆلۈڭ.
y=0
y+2x=0 دە 0 نى x گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، y نى بىۋاسىتە يېشەلەيسىز.
y=0,x=0
سىستېما ھەل قىلىندى.