\left\{ \begin{array} { l } { x y = 6 } \\ { 2 y - 1 = 13 } \end{array} \right.
x، y نى يېشىش
x=\frac{6}{7}\approx 0.857142857
y=7
گرافىك
تەڭ بەھرىمان بولۇش
قىسقۇچقا كۆچۈرۈلگەن
2y=13+1
ئىككىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. 1 نى ھەر ئىككى تەرەپكە قوشۇڭ.
2y=14
13 گە 1 نى قوشۇپ 14 نى چىقىرىڭ.
y=\frac{14}{2}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
y=7
14 نى 2 گە بۆلۈپ 7 نى چىقىرىڭ.
x\times 7=6
بىرىنچى تەڭلىمىنى ئويلىشىپ بېقىڭ. ئۆزگەرگۈچى مىقدارنىڭ بىلىنگەن قىممەتلىرىنى تەڭلىمىگە كىرگۈزۈڭ.
x=\frac{6}{7}
ھەر ئىككى تەرەپنى 7 گە بۆلۈڭ.
x=\frac{6}{7} y=7
سىستېما ھەل قىلىندى.
مىساللار
تۆت تەرەپ تەڭلىمىسى
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
سىزىقلىق تەڭلىمە
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
تەڭلىمە
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
پەرقلەندۈرۈش
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
بىرىكتۈرۈش
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
چەكلەر
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}