ئاساسىي مەزمۇنغا ئاتلاش
x، y نى يېشىش
Tick mark Image
گرافىك

تور ئىزدەشتىكى مۇشۇنىڭغا ئوخشاش مەسىلىلەر

تەڭ بەھرىمان بولۇش

x-y=10,2x+2y+\frac{1}{2}=200
بىر جۈپ تەڭلىمىنى ئالماشتۇرۇش ئۇسۇلى ئارقىلىق يېشىش ئۈچۈن بىر تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنى تېپىڭ. ئاندىن نەتىجىنى يەنە بىر تەڭلىمىدىكى شۇ ئۆزگەرگۈچى مىقدارغا ئالماشتۇرۇڭ.
x-y=10
تەڭلىمىدىن بىرنى تالاپ، x نى تەڭلىك بەلگىسىنىڭ سول تەرىپىدە يالغۇز قالدۇرۇش ئارقىلىق x نىڭ قىممىتىنى تېپىپ، تەڭلىمىنى يېشىڭ.
x=y+10
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە y نى قوشۇڭ.
2\left(y+10\right)+2y+\frac{1}{2}=200
يەنە بىر تەڭلىمە 2x+2y+\frac{1}{2}=200 دىكى x نىڭ ئورنىغا y+10 نى ئالماشتۇرۇڭ.
2y+20+2y+\frac{1}{2}=200
2 نى y+10 كە كۆپەيتىڭ.
4y+20+\frac{1}{2}=200
2y نى 2y گە قوشۇڭ.
4y+\frac{41}{2}=200
20 نى \frac{1}{2} گە قوشۇڭ.
4y=\frac{359}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{41}{2} نى ئېلىڭ.
y=\frac{359}{8}
ھەر ئىككى تەرەپنى 4 گە بۆلۈڭ.
x=\frac{359}{8}+10
x=y+10 دە \frac{359}{8} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
x=\frac{439}{8}
10 نى \frac{359}{8} گە قوشۇڭ.
x=\frac{439}{8},y=\frac{359}{8}
سىستېما ھەل قىلىندى.
x-y=10,2x+2y+\frac{1}{2}=200
تەڭلىمىنى ئۆلچەملىك شەكىلدە قىلىپ، ماترىتسا ئارقىلىق تەڭلىمە سىستېمىسىنى يېشىڭ.
\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
تەڭلىمىلەرنى ماترىتسا شەكلىدە يېزىڭ.
inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}1&-1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
\left(\begin{matrix}1&-1\\2&2\end{matrix}\right) نىڭ تەتۈر ماترىتساسى ئارقىلىق تەڭلىمىنىڭ سول تەرىپىنى كۆپەيتىڭ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
ماترىتسا ۋە ئۇنىڭ تەتۈرىنىڭ ھاسىلاتى بىرلىك ماترىتسادۇر.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&2\end{matrix}\right))\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
تەڭلىك بەلگىسىنىڭ سول تەرىپىدىكى ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-2\right)}&-\frac{-1}{2-\left(-2\right)}\\-\frac{2}{2-\left(-2\right)}&\frac{1}{2-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
2\times 2 ماترىتسا \left(\begin{matrix}a&b\\c&d\end{matrix}\right) نىڭ ئەكسى ماترىتساسى \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right)، شۇڭا ماترىتسا تەڭلىمىسىنى ماترىتسا كۆپەيتىش مەسىلىسى سۈپىتىدە قايتا يېزىشقا بولىدۇ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{4}\\-\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}10\\\frac{399}{2}\end{matrix}\right)
ھېسابلاڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 10+\frac{1}{4}\times \frac{399}{2}\\-\frac{1}{2}\times 10+\frac{1}{4}\times \frac{399}{2}\end{matrix}\right)
ماترىتسالارنى كۆپەيتىڭ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{439}{8}\\\frac{359}{8}\end{matrix}\right)
ھېسابلاڭ.
x=\frac{439}{8},y=\frac{359}{8}
ماترىتسا ئېلېمېنتلىرى x ۋە y نى يېيىڭ.
x-y=10,2x+2y+\frac{1}{2}=200
قىسقارتىپ يېشىش ئۈچۈن ھەر ئىككى تەڭلىمىدىكى بىر ئۆزگەرگۈچى مىقدارنىڭ كوئېففىتسېنتى بىر تەڭلىمىنى يەنە بىر تەڭلىمىدىن ئالغاندا ئۆزگەرگۈچى سان يېيىشىپ يوقايدىغان ھالەتتە ئوخشاش بولۇشى كېرەك.
2x+2\left(-1\right)y=2\times 10,2x+2y+\frac{1}{2}=200
x بىلەن 2x نى تەڭ قىلىش ئۈچۈن بىرىنچى تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىكى بارلىق ئەزالارنى 2 گە، ئىككىنچى تەڭلىمىدىكى بارلىق ئەزالارنى 1 گە كۆپەيتىڭ.
2x-2y=20,2x+2y+\frac{1}{2}=200
ئاددىيلاشتۇرۇڭ.
2x-2x-2y-2y-\frac{1}{2}=20-200
تەڭلىك بەلگىسىنىڭ ھەر ئىككى تەرىپىدىن بىر خىل ئەزالارنى ئېلىش ئارقىلىق 2x-2y=20 دىن 2x+2y+\frac{1}{2}=200 نى ئېلىڭ.
-2y-2y-\frac{1}{2}=20-200
2x نى -2x گە قوشۇڭ. 2x بىلەن -2x يېيىشىپ، تەڭلىمىدە يەشكىلى بولىدىغان بىرلا ئۆزگەرگۈچى سان قالدۇرىدۇ.
-4y-\frac{1}{2}=20-200
-2y نى -2y گە قوشۇڭ.
-4y-\frac{1}{2}=-180
20 نى -200 گە قوشۇڭ.
-4y=-\frac{359}{2}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىگە \frac{1}{2} نى قوشۇڭ.
y=\frac{359}{8}
ھەر ئىككى تەرەپنى -4 گە بۆلۈڭ.
2x+2\times \frac{359}{8}+\frac{1}{2}=200
2x+2y+\frac{1}{2}=200 دە \frac{359}{8} نى y گە ئالماشتۇرۇڭ. كېلىپ چىققان تەڭلىمىدە بىرلا ئۆزگەرگۈچى مىقدار بولىدۇ، x نى بىۋاسىتە يېشەلەيسىز.
2x+\frac{359}{4}+\frac{1}{2}=200
2 نى \frac{359}{8} كە كۆپەيتىڭ.
2x+\frac{361}{4}=200
ئومۇمىي مەخرەجنى تېپىپ، سۈرەتنى قوشۇش ئارقىلىق \frac{359}{4} نى \frac{1}{2} گە قوشۇڭ. ئاندىن كەسىرنى ئىمكانىيەتنىڭ بارىچە كىچىكلىتىڭ.
2x=\frac{439}{4}
تەڭلىمىنىڭ ھەر ئىككى تەرىپىدىن \frac{361}{4} نى ئېلىڭ.
x=\frac{439}{8}
ھەر ئىككى تەرەپنى 2 گە بۆلۈڭ.
x=\frac{439}{8},y=\frac{359}{8}
سىستېما ھەل قىلىندى.